
Spanning Trees in Hypergraphswith Applications to Steiner TreesA DissertationPresented to the Faculty of the School of Engineering and Applied ScienceUniversity of VirginiaIn Partial Ful�llment of the Requirements for the Degree ofDoctor of PhilosophyComputer SciencebyDavid Michael WarmeMay 1998

ApprovalsThis dissertation is submitted in partial ful�llment of the requirements for the degree ofDoctor of PhilosophyComputer Science
David M. WarmeApproved:

Je�rey S. Salowe (Advisor)James P. Cohoon (Chair)Kevin J. Sullivan John L. PfaltzPeter A. Beling (Minor Representative)Accepted by the School of Engineering and Applied Science:
Richard W. Miksad (Dean)May 1998

Copyright c May 1998 by David M. Warme.All rights reserved.

iv

This work is dedicated to the incomparable three-in-one:� To God the Father almighty, author of all that is created andcreative.� To my Lord and saviour Jesus Christ, who out of love suf-fered, died and rose again to pay for my wickedness so that Icould be with Him forever.� To the Holy Spirit, who inspires, encourages and convicts meto be more like Jesus.All glory, honor and praise to God most high!

Acknowledgments
My greatest thanks and appreciation go to my wife Rachel. Without her support, under-standing, kindness and encouragement this dissertation would not exist. The writing maybe mine, but the triumph belongs to her | nobody else has worked as hard for this degree.It is all too easy for me to believe that Proverbs chapter 31 is really a prophecy aboutRachel. Thanks also to Michael and Sina for letting me be your daddy. You are the mostspecial boy and most special girl I know, and I'll be applying for the full-time position verysoon!I sincerely thank my advisor, Je� Salowe. His guidance, advice, and encouragementhave been invaluable throughout both my master's and doctoral studies. I am especiallygrateful for the day back in 1994 when he tossed a really fun problem into my lap. Littledid I know that his chunk of code would bring me so much fun, hard work, discovery, latenights, disappointment, exhilaration, sweat | and a Ph.D. dissertation!At least a thousand thanks must go to Karla Ho�man, without whom I'd still be strug-gling to solve 100 point problems. Her two excellent classes on integer programming properlyequipped me to make real progress on this problem. Our many after-class discussions wereextremely helpful in crystallizing my integer programming formulation. Thank you espe-cially, Karla, for not permitting me to do the normal class project, but for forcing me insteadto apply the techniques to my research topic!A special thank you to Abilio Lucena for agreeing to collaborate with me on my projectfor Karla's class. Our joint work in April of 1996 yielded the �rst optimal solutions everv

vito several of the 100 point OR-library problems. These encouraging results inspired me toapply integer programming techniques directly to the FST concatenation problem. Thanksalso to Yash Aneja who kindly referred me to Abilio.I thank Pawel Winter for the absolutely splendid timing of his recent Euclidean FSTgenerator (I was literally two days away from starting the six month task of writing myown) and for agreeing to collaborate. He gave me a number of suggestions whose impactwas always inversely proportional to their length in words. Many heartfelt thanks also tohis student, Martin Zachariasen, who worked so closely with me on this collaboration. Hishard work, keen insight, and lengthy discussions have contributed immensely to this work.He has become a good friend.I gratefully thank Maurice Queyranne for solving my separation problem so quickly, andfor other thought-provoking conversations. I thank him also for encouraging me to enterthe George Nicholson student paper competition.Thanks also to Jim Cohoon, John Pfaltz, Kevin Sullivan and Peter Beling for servingon my dissertation committee and for their helpful comments on this work.Many thanks to James Davis for his gracious listening, tracking of progress, encourage-ment | and for a number of fruitful code reviews. I thank him also for his friendship andfor the many social engagements that made me put away the research when distraction waswhat I needed most.In addition, I am grateful to the following people for helpful comments on variousbits and pieces of this research: Robert Carr, William Cunningham, Joe Ganley, AndrewKahng, Michael Kaufmann, Alexander Martin, Thomas McCormick, Manfred Padberg,Dana Richards, Giovanni Rinaldi, Warren D. Smith, Alexander Zelikovsky, and the anony-mous referees of our papers. My apologies to the others who I have doubtless forgotten tomention.Special thanks to J.A.N. Lee for inspiration, for being a model of excellence, and withoutwhom I would never have attended the University of Virginia.

viiI sincerely thank my employers Wayne Zandbergen and Garth Morgan for the tremen-dous encouragement and support they have provided from the day I joined S3I. I ameternally grateful to Karla Ho�man for hooking me up with them during a time of greatneed.Thanks to Pawel Winter and Martin Zachariasen for providing me with Euclidean FSTgeneration code. Additional thanks to Kurt Mehlhorn, Stefan N�aher, Christian Uhrig, andLEDA Software GmbH for providing the research version of LEDA (Library of E�cientData types and Algorithms) | which is used extensively by the Euclidean FST generator.I thank Joe Ganley for his LATEX macros that made this dissertation much easier toprepare.During my doctoral studies, I have received �nancial support from Telenex Corporationand from System Simulation Solutions, Incorporated. Their support is greatly appreciated.

This document was prepared using LATEX version 2". Some �gures were prepared usingxfig and gnuplot.

Contents
1 Introduction 11.1 De�nitions . 41.2 Previous Work . 52 The Steiner Tree Problem 92.1 Overview of the FST Concatenation Method 92.2 General Properties of FSTs . 132.3 Euclidean FST Generation . 152.4 Rectilinear FST Generation . 243 The Spanning Tree in Hypergraph Problem 333.1 De�nitions . 343.2 Spanning Tree in Hypergraph is NP-Complete 373.3 Reduction From FST Concatenation to MST in Hypergraph 383.4 Integer Programming Formulation . 393.5 The Spanning Tree in Hypergraph Polytope: STHGP(n) 403.6 Counting the Spanning Trees of Kn . 544 The Algorithm 604.1 Branch-and-Cut Procedure . 604.2 Empirical Results . 82viii

Contents ix5 Future Work 955.1 New Facet Classes . 955.2 Early Branching . 985.3 Steiner Problem in Graphs . 995.4 New Formulations . 996 Conclusions 100A Reduction Algorithms 102B Tabulated OR-Library Results 106

List of Figures
1.1 A rectilinear Steiner minimal tree for 70 terminals. 31.2 A Euclidean Steiner minimal tree for 100 terminals. 31.3 Hanan grid graph for problem in Figure 1.1. 71.4 Union of FSTs graph for problem in Figure 1.1. 71.5 Progress on Euclidean and rectilinear Steiner tree problems. 82.1 All rectilinear FSTs for problem in Figure 1.1. 112.2 All rectilinear FSTs for problem in Figure 1.1 (cont). 122.3 Euclidean lune. 142.4 Rectilinear corner lune. 142.5 Rectilinear diamond. 142.6 Simpson line construction of Steiner point. 162.7 Construction of FST from recursive equilateral points. 172.8 Tree structure of equilateral points. 172.9 Projections: four cases retained. 202.10 The lune property. 222.11 The wedge property. 232.12 The Hwang topologies. 252.13 The corner-ip and slide transforms. 262.14 The corner-ipped topologies. 272.15 Empty rectangles. 28x

List of Figures xi2.16 Hwang topology empty regions. 292.17 Long leg candidate region. 302.18 Short leg candidate region. 303.1 Example hypergraph H. 363.2 Example spanning tree of H. 363.3 Example non-tree subhypergraph of H. 363.4 Case 1 for proof of Lemma 3.5 . 473.5 Case 2 for proof of Lemma 3.5 . 473.6 Case 3 for proof of Lemma 3.5 . 483.7 Case 4 for proof of Lemma 3.5 . 494.1 Algorithm 1 | branch and cut. 634.2 Algorithm 2 | process node. 644.3 Example branch-and-cut tree 1. 654.4 Example branch-and-cut tree 2. 664.5 Example branch-and-cut tree 3. 674.6 Example branch-and-cut tree 4. 674.7 Example branch-and-cut tree 5. 684.8 Final example branch-and-cut tree. 694.9 Flow network for subtour separation problem. 714.10 Scatter plot of FST generation time vs. number of terminals. 844.11 Plot of min/avg/max FST generation time vs. number of terminals. 844.12 Scatter plot of FST generation time vs. number of FSTs generated. 854.13 Plot of number of FSTs vs. number of terminals. 854.14 Scatter plot of Euclidean FST concatenation time vs. number of terminals. 864.15 Scatter plot of rectilinear FST concatenation time vs. number of terminals. 864.16 Scatter plot of Euclidean FST concatenation time vs. number of FSTs. . . 87

List of Figures xii4.17 Scatter plot of rectilinear FST concatenation time vs. number of FSTs. . . 874.18 Scatter plot of EFST and RFST concatenation time vs. number of FSTs. . 884.19 Plot of FST min/avg/max concatenation time vs. number of terminals. . . 884.20 Scatter plot of Euclidean SMT total CPU time vs. number of terminals. . . 894.21 Scatter plot of rectilinear SMT total CPU time vs. number of terminals. . . 894.22 Scatter plot of Euclidean SMT total CPU time vs. number of FSTs. 904.23 Scatter plot of rectilinear SMT total CPU time vs. number of FSTs. 904.24 Scatter plot of ESMT and RSMT total CPU time vs. number of FSTs. . . 914.25 Plot of min/avg/max total CPU time vs. number of terminals. 914.26 A rectilinear Steiner minimal tree for 1000 terminals. 934.27 A Euclidean Steiner minimal tree for 2000 terminals. 94A.1 Algorithm A.1 | compute congested subgraph. 103A.2 Algorithm A.2 | biconnected components of hypergraph. 104A.3 Subroutine traverse of Algorithm A.2. 105

List of Tables5.1 Properties of STHGP(n). 98B.1 Euclidean results for Soukup and Chow problems. 107B.2 Rectilinear results for Soukup and Chow problems. 108B.3 Results for OR-library problems 10{20 points. 109B.4 Results for OR-library problems 30{40 points. 110B.5 Results for OR-library problems 50{60 points. 111B.6 Results for OR-library problems 70{80 points. 112B.7 Results for OR-library problems 90{100 points. 113B.8 Results for OR-library problems 250{500 points. 114B.9 Results for OR-library problems 1000 points. 115

xiii

Abstract
This dissertation examines the geometric Steiner tree problem: given a set of terminalsin the plane, �nd a minimum-length interconnection of those terminals according to somegeometric distance metric. In the process, however, it addresses a much more general andwidely applicable problem, that of �nding a minimum-weight spanning tree in a hypergraph.The geometric Steiner tree problem is known to be NP-complete for the rectilinearmetric, and NP-hard for the Euclidean metric. The fastest exact algorithms (in practice)for these problems use two phases: First a small but su�cient set of full Steiner trees (FSTs)is generated and then a Steiner minimal tree is constructed from this set. These phasesare called FST generation and FST concatenation, respectively, and an overview of eachphase is presented. FST concatenation is almost always the most expensive phase, and hastraditionally been accomplished via simple backtrack search or dynamic programming.The spanning tree in hypergraph problem is de�ned, and is proven to be stronglyNP-complete. The minimum-weight spanning tree (MST) in hypergraph problem is thenmotivated by showing that FST concatenation reduces to MST in hypergraph in a simpleway. The MST in hypergraph problem is then formulated as an integer program usingsubtour elimination constraints.The spanning tree in hypergraph polytope, STHGP(n), is introduced and a numberof its properties are proven. In particular, every constraint used in the integer program isshown to de�ne a facet of STHGP(n). An alternate integer programming formulation basedon cutset constraints is presented, but is shown to have an LP relaxation that is weakerxiv

Abstract xvthan that of the subtour formulation. A simple formula for the number of extreme points inSTHGP(n) is shown, thereby generalizing the classical tree enumeration problem of Cayleyto hypergraphs.A branch-and-cut algorithm for the MST in hypergraph problem is presented. Thisalgorithm is applied to the FST concatenation problem. Experimental results are presentedfor a large set of problem instances of various sizes up to 1000 terminals. Optimal recti-linear and Euclidean Steiner trees are obtained for every instance. A single 2000 terminalEuclidean instance is also solved to optimality. These results show that the new algorithmis by far the fastest in existence, since the best previously published Steiner tree results are70 terminals for rectilinear and 150 terminals for Euclidean, respectively.A number of directions for future work are outlined, and in conclusion it is noted thatthis two-phase approach works for any distance metric in any �nite dimension | even theSteiner problem in graphs | provided a suitable FST generation algorithm is available.

1Introduction
The Steiner tree problem is one of the oldest optimization problems in all of mathematics.Although the ancient Greeks knew that the shortest path connecting two points was astraight line, it was apparently Fermat who �rst asked what the shortest path was connectingthree points. Torricelli provided a geometric construction for this by 1640 | 56 yearsbefore Johann Bernoulli posed his famous brachistochrone problem. In 1934 Jarn��k andK�ossler [31] posed the general Euclidean problem in the plane, which was popularized byCourant and Robbins in their famous 1941 book \What Is Mathematics?" [13] | althoughthey incorrectly attributed the problem to Steiner! In 1966 Hanan [26] �rst considered therectilinear variant, which is currently very important due to its connection with routing ofcircuit nodes in VLSI and printed circuit boards.Given a �nite set V of points in the plane (called terminals), the Steiner tree problem isto �nd a minimum-length interconnection of those terminals according to some geometricdistance metric. The resulting interconnection is a tree, called a Steiner minimal tree.Nodes s =2 V of degree 3 or greater are known as Steiner points, and are introduced asnecessary to achieve the shortest possible interconnection.Let u = (ux; uy) and v = (vx; vy) be two points in R2 . Then the distance in the Lp-metric, 1 � p � 1, between u and v (or simply the Lp distance) is (jux�vxjp+juy�vyjp)1=p.1

2For the Steiner tree problem the most common special cases are p = 1 and p = 2: the L1(rectilinear or Manhattan) distance jux � vxj + juy � vyj, and the L2 (Euclidean) distanceq(ux � vx)2 + (uy � vy)2, respectively. The corresponding Steiner tree problem variantsare known as the rectilinear Steiner minimal tree (RSMT) and Euclidean Steiner minimaltree (ESMT) problems. The decision form of RSMT is known to be NP-complete [21]. Thedecision form of ESMTwould be NP-complete, except that the problem is not known to be inNP. This follows from the fact that the lengths of Steiner trees can be complicated algebraicnumbers, and it is not yet clear whether trustworthy computation with such numbers canbe done in polynomial time. A suitably discretized version of the ESMT problem has beenshown to be NP-complete, however [20].The rectilinear problem is equivalent to requiring that all interconnecting line segmentsbe horizontal or vertical. See Figure 1.1 for an illustration of an RSMT for 70 terminals.The Euclidean problem is characterized by line segments forming angles that are always120 degree or more. In particular, all Steiner points have degree 3 and form angles ofprecisely 120 degrees. See Figure 1.2 for an illustration of an ESMT for 100 terminals.The RSMT problem has numerous applications in the area of VLSI design automation aswell as printed circuit board layout. For example, an RSMT for a set of electron devices canbe used as a lower bound estimate on the wire length of a route connecting all of the devicestogether. An RSMT of the points represents only a lower bound since a real interconnectsatis�es additional constraints requiring it to avoid other obstacles that are also presenton the chip. Recent work by Ganley [17] treated such obstacle-avoiding RSMTs directly.In addition to global wire length estimation, RSMTs have also been used to evaluate themerit of functional block placements in oor-planners such as the MONDRIAN system [17].Wagner [57] reduces certain cases of parallel expression evaluation to the RSMT problem.The ESMT problem has applications in the design of electrical power distributionnetworks, oil and natural gas pipelines and other network design problems.

3

Figure 1.1: A rectilinear Steinerminimal tree for 70 terminals. Figure 1.2: A Euclidean Steiner min-imal tree for 100 terminals. (Problem1 from OR-library estein100.txt�le.)
Some of these applications require the solution of problem instances containing manyhundreds or even thousands of terminals. Provably optimal solutions to such instanceswere well beyond the capabilities of previous methods, but are becoming feasible with thealgorithm presented here.The research described here focused initially on the rectilinear problem, adapting Win-ter's groundbreaking Euclidean work [60] to the rectilinear problem. Although the initialresults of these e�orts represented a signi�cant advance for the rectilinear problem, theyfell disappointingly short of the 100 terminal solutions obtained for the Euclidean problem.During the e�orts to close this gap, however, it was discovered that a much more generaland widely applicable problem | the minimum spanning tree in hypergraph problem |was lurking inside. The solution presented here for the MST in hypergraph problem rep-

1.1. De�nitions 4resents a quantum breakthrough for computing Steiner trees. Nevertheless, the MST inhypergraph results are likely to be more important and generally applicable in the long run.
1.1 De�nitionsIn order to further discuss the Steiner tree problem, a number of key terms must be formallyde�ned, the most important one being full Steiner tree (abbreviated FST).Let V be a set of n points in the plane called terminals. A Steiner minimal tree T for Vis said to have a full topology if every vertex in V is a leaf in T . A terminal set V is said tobe a full set if every Steiner minimal tree for V has a full topology. A terminal set that is afull set and also has size k is said to be a full set of size k. With respect to a point set V , aset S � V is said to be a full set with respect to V if S is a full set, and there is some Steinerminimal tree for V that contains a full topology of S as a subgraph. A Steiner minimal treeT for a full set S � V is said to be a full Steiner tree (FST) of V . For any FST F we de�nejF j to be the total length of F according to the appropriate distance metric. If F is a setof FSTs we de�ne [F = [F2FF , the union of these FSTs in the plane.The key concept to be grasped here is that if a subset S � V is a full set, then it ispossible to achieve a minimal interconnection of the terminals S (in the context of an SMTfor V) only by routing to them, not through them (nor through any other terminals in V).A full Steiner tree (FST) is simply a particular such minimal tree interconnecting S.In an intuitive sense this means that the terminals S reside at the periphery of someregion, and all interconnections between the terminals of S lie inside this region, which isempty of terminals. Although this is literally true for rectilinear FSTs, it is only �gurativelytrue of Euclidean FSTs, where this routing region can have a complicated branching treestructure | even forming arbitrary spirals.

1.2. Previous Work 51.2 Previous WorkThe �rst �nite algorithm for the Euclidean Steiner tree problem was given by Melzak [40]. Itworks by explicitly enumerating all possible tree topologies, computing a relatively minimalcon�guration for each. The shortest is retained and is the ESMT. Cockayne [9] improvedthe method, which was later coded by Cockayne and Schiller [12] and handled problemswith up to 7 terminals. Boyce and Seery [7] improved the method so that 10 and later 12terminal problems could be solved. Hwang provided an O(n) solution to the Melzak FSTalgorithm, a crucial subroutine in the method [28].Winter [60] devised a totally di�erent approach that �rst generates all possible FSTs,and then constructs a Steiner minimal tree by choosing a subset of the FSTs that spanthe terminals with minimal length. Problems up to 15 terminals were solved quite rapidly.Further improvements were made by Cockayne and Hewgill [10, 11], who reported solutionsof problems up to 100 terminals.Recently Winter and Zachariasen [62] re�ned these methods even further, solving prob-lems up to 150 terminals.Other exact ESMT algorithms include the negative edge algorithm of Trietsch andHwang [56], and the luminary algorithm of Hwang and Weng [30]. Neither of these algo-rithms have been implemented.The rectilinear problem was introduced in 1966 by Hanan [26], who characterized op-timal solutions for n � 5 terminals. Hanan also showed that an RSMT always exists asa subgraph of a grid graph, obtained by constructing horizontal and vertical lines througheach terminal. The �rst exact algorithm in the literature appeared in 1972 by Yang andWing [63], who report solving problems with up to 9 terminals. No further computationaladvances appear in the literature until 1989.In 1976, Hwang completely characterized the rectilinear FSTs [27]. This importantresult forms the basis of all known rectilinear FST generators, including the rectilinearresults reported in this dissertation.

1.2. Previous Work 6Further computational progress resumed in 1989 when Sidorenko [50] reported an algo-rithm applicable up to 11 terminals. Similar results were reported by Lewis, Pong and VanCleave [36] in 1992. Thomborson, Alpern and Carter [54] report solving problems with upto about 16 terminals in 1992. The algorithms of Ganley and Cohoon [18, 19] handle about18 and 28 terminals, respectively in 1994.In 1993, Salowe and Warme [48] made a signi�cant advance by adapting the Euclideanresults of Winter [60] and Cockayne and Hewgill [10, 11] to the rectilinear problem| solvingmost 30 terminal instances in an average of 30 minutes. Further re�nements [49] increasedthis to about 35 points. In 1997, F�o�meier and Kaufmann further re�ned the approach sothat most 70 terminal problems are solved, which are the best results currently appearingin the literature.Virtually all other exact algorithms for the rectilinear problem use the seductively simpleHanan grid graph reduction to the Steiner problem in graphs. This reduction has been by farthe most popular approach to computing RSMTs. Various exact algorithms for the Steinerproblem in graphs have been tried on grid graphs, including the dynamic programmingmethod of Dreyfus and Wagner [15, 54], Hakimi's method [25] as well as sophisticatedbranch-and-cut methods [38, 34]. However, even the most sophisticated branch-and-cutcodes fail to solve instances much larger than 40 terminals due to the extreme degeneracyof the Hanan grid graph.In 1996 the author in collaboration with Abilio Lucena solved several of the 100 terminalinstances from the OR-library. Lucena's branch-and-cut code was used to solve the Steinerproblem in a graph obtained by taking the union of all the rectilinear FSTs. The resultinggraphs are extremely sparse compared to Hanan grid graphs (see Figures 1.3 and 1.4), andare much easier to solve. Although further improvement in these graphs seem possibleusing the graph reductions devised by Winter [61], this approach seems unlikely to meet orovertake the methods presented here.

1.2. Previous Work 7

Figure 1.3: Hanan grid graph forproblem in Figure 1.1. Figure 1.4: Union of FSTs graph forproblem in Figure 1.1.The research described in this dissertation builds upon the author's previous break-through [48, 49] achieved during his M.S. studies. The new method results in provablyoptimal solutions to random problem instances having up to 1000 terminals. Winter andZachariasen generously provided source code for their new Euclidean FST generator [62],permitting these results to be re-applied to the Euclidean problem | resulting in optimalsolutions to problems having up to 2000 terminals. See Figure 1.5 for a timeline showingprogress on the Euclidean and rectilinear Steiner tree problems.

1.2. Previous Work 8

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

������
������
������
������

����
�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1934 61 66 67 72 73 76 85 86 89 92 93 94 95 96

Jarnik
Kossler

Hanan

Cockayne

Melzak

Cockayne
Schiller

Wing
Yang

97

Boyce
Seery

Hwang’s
Theorem

Winter

12 15
11

Sidorenko

Hwang
O(n) FST

30

5

100

16

Thomborson
et al

30
28

Ganley
Cohoon

35

97 1998

100

Warme
Lucena

150

Winter
Zachariasen

70

Fossmeier
Kaufmann

1000

Warme
Winter
Zachariasen

Euclidean

Rectilinear

Problem Introduced

Computational Result

Theoretical Result
Key

Warme

Warme
Salowe

Cockayne
Hewgill

2000

Figure 1.5: Progress on Euclidean and rectilinear Steiner tree problems.

2The Steiner Tree ProblemThis chapter discusses the Steiner tree problem in depth, and its solution using FST gen-eration followed by FST concatenation. An overview of the key ideas behind Euclideanand rectilinear FST generation are presented | primarily so that the dissertation may bemore self-contained. For the entire story, consult [60, 62] for Euclidean FST generationand [49, 64] for rectilinear FST generation.See [29] for a more comprehensive treatment of Steiner tree results and methods.2.1 Overview of the FST Concatenation MethodIn this section we give a brief overview of the FST concatenation method for computingSteiner minimal trees.The following is a well-known folk theorem of Steiner tree lore:Theorem 2.1 Let V be a set of terminals, with jV j � 2. Then V has a Steiner minimaltree that consists of one or more full topologies over full sets with respect to V . These fulltopologies intersect only at terminals of degree two or greater.This theorem validates a two-phase scheme originally suggested by Winter [60] for theEuclidean problem. The idea is as follows: In the �rst (FST generation) phase we generate9

2.1. Overview of the FST Concatenation Method 10a (usually small) set F of FSTs containing at least one SMT identi�ed as a subset. In thesecond (FST concatenation) phase we �nd a subset F� � F with minimum total lengththat fully connects V .This scheme was �rst applied to the rectilinear problem by Salowe and Warme [48, 49].To illustrate the method on a rectilinear problem, Figures 2.1 and 2.2 present all 216members of F (rectilinear FSTs) obtained by the Salowe-Warme FST generation algo-rithm [48, 49] for the 70 point problem shown in Figure 1.1. The reader may verify thatthe RSMT shown in Figure 1.1 is the union of 35 FSTs, each of which can be found inFigures 2.1 and 2.2.In general, members of F are identi�ed by e�ciently eliminating those subsets of V thatcannot be full sets with respect to V . Those subsets that remain might not all be true fullsets with respect to V , so we refer to them as candidate full sets, and their corresponding fulltopologies as candidate FST s. Note that it is neither practical nor necessary to establishthat the members of F are true SMTs over full sets with respect to V | we need onlyguarantee that at least one SMT be present as a subset of F . In the sequel we will neglectthe distinction between true FSTs and candidate FSTs.We would like jFj to be as small as possible. Although there are point sets that giverise to an exponential number of FSTs [16], empirical data shows the expected numberto be linear for uniformly distributed V . This is often considered a weakness of the FSTapproach, since it yields a doubly-exponential algorithm in the worst case. In practice it isby far the fastest exact algorithm known.It is often possible for an FST generation algorithm to compute an incompatibilityrelation C � F � F such that (F;G) 2 C implies that F and G cannot appear together inan optimal SMT for V . The validity of (F;G) 2 C ultimately appeals to showing that anysolution containing both F and G is necessarily suboptimal. Having a signi�cant number ofincompatible FST pairs greatly reduces the search space during FST concatenation. Thereare also FST pruning methods that can rule out additional members of F once the entire

2.1. Overview of the FST Concatenation Method 11

Figure 2.1: All rectilinear FSTs for problem in Figure 1.1.

2.1. Overview of the FST Concatenation Method 12

Figure 2.2: All rectilinear FSTs for problem in Figure 1.1 (cont).

2.2. General Properties of FSTs 13set is available. The cost of current pruning methods is greater than their bene�t to theFST concatenation algorithm presented here.2.2 General Properties of FSTsThere are several tests used to eliminate FSTs from consideration that work for any metric.The most important of these are the lune test, the bottleneck Steiner test and upper bounds.2.2.1 Lune PropertyConsider two vertices u and v in a Steiner minimal tree that are connected by a segmentcontaining no intervening terminals or Steiner points. (The two vertices may be any mix ofterminals or Steiner points.) Suppose there is a terminal w 2 V such that jw� uj < ju� vjand jw � vj < ju � vj, where ja � bj is the distance between a and b under the metricbeing used. Now delete segment uv from the tree, splitting the tree into two connectedcomponents. If terminal w is in the same component as u, reconnect the tree by addingsegment wv, otherwise reconnect the tree by adding segment wu. The resulting tree isshorter in either case, contradicting the assumption that the original tree was a Steinerminimal tree. No such terminal w can therefore exist.This is a simple but powerful concept. Figure 2.3 illustrates the Euclidean case. Theshaded region is called a lune and its interior must be devoid of terminals or the line segmentmust be removed from consideration. Figures 2.4 and 2.5 show the analogous regions inthe rectilinear metric. For consistency, such regions are also called lunes regardless of whatshape they have in a particular metric.2.2.2 Bottleneck Steiner DistancesConstruct a minimum spanning tree (MST) for the set V of terminals. For every u; v 2 Vlet buv denote the length of the longest edge on the unique path from terminal u to terminal

2.2. General Properties of FSTs 14

Figure 2.3: Euclideanlune. Figure 2.4: Rectilinearcorner lune. Figure 2.5: Rectilineardiamond.v in the MST. We refer to buv as the bottleneck Steiner distance. Consider a Steiner minimaltree T for V . Suppose the longest edge between u and v in T has length l > buv. Deletethis segment from T thereby splitting T into two connected components | one containingu, the other v. Let S � V be the terminals in the component containing u. The terminalsin the other component are therefore V � S. Consider the unique path from u to v in theMST. At least one of these edges will span the cut from S to V � S; any such edge canbe used to reconnect T . Furthermore all such edges have length at most buv making theresulting tree shorter. This contradicts the assumption that T is a Steiner minimal tree.This is another powerful tool for eliminating FSTs from consideration. BottleneckSteiner distances for all pairs of terminals can be computed as a preprocessing step. TheMST can be computed in O(n log n) time. The bottleneck Steiner distance from one ter-minal to all others can be computed in O(n) time via depth-�rst traversal, implying O(n2)total preprocessing time. Thereafter a potential FST F can be eliminated if any edge onthe unique path in F between two terminals u; v 2 F is longer than buv.Consider an FST F spanning terminals S � V . It is easy to show that if the lengthof F exceeds that of a minimum spanning tree for S computed using bottleneck Steinerdistances, then F cannot be part of a Steiner minimal tree.

2.3. Euclidean FST Generation 152.2.3 Upper BoundsAny heuristic that generates valid Steiner trees (not necessarily minimal) for a given set ofterminals can be used as an upper bound test. Suppose an FST F spanning terminals Shas length that exceeds that of a heuristic Steiner tree for S. Then F cannot be part of aSteiner minimal tree.2.3 Euclidean FST GenerationWe now give a brief overview of the FST generation process for the Euclidean distancemetric. These results are not original, and are presented for completeness only. The fulldetails are in Winter and Zachariasen [62].All line segments within a Euclidean SMTmust meet at angles of 120� or more, otherwisethe tree can be easily shortened. We refer to this property as the angle condition. Steinerpoints therefore always have degree three, forming angles of exactly 120�.Let p and q be two points in the plane. The equilateral point epq is the point obtainedby rotating point q counter-clockwise by an angle of 60� around point p. Points p, q andepq are then the vertices (in counter-clockwise order) of an equilateral triangle. Note thateqp is di�erent from epq. Points p and q are called the base points of epq.The circle circumscribing4p epq q is called the equilateral circle of p and q and is denotedCpq. Its center is denoted opq. The Steiner arc from p to q is the counter-clockwise arc fromp to q on Cpq, and is denoted cpq. The same notation is used to denote subarcs of the Steinerarc: if p0; q0 2 cpq, then the subarc from p0 to q0 is denoted dp0q0. Such arcs and subarcs arealways considered to be counter-clockwise, so that if p0 2 cq0q n fq0g, then dp0q0 is empty.Consider the equilateral triangle and circle for p and q shown in Figure 2.6. The pointr is such that line segment repq intersects the interior of arc cpq at point s. It is easy tosee that 6 q s epq = 6 p s epq = 60�: Let x be the intersection of segments pq and sepq. Then4q s x � 4p x epq, because 6 q x s = 6 p x epq and 6 s q p = 6 s epq p since they both subtend

2.3. Euclidean FST Generation 16arc cps. This implies that 6 q s x = 6 x p epq = 60�. The same argument applies to 4q x epqand4s x p with arc csq. Therefore s satis�es the 120� angle property required by the Steinerpoint for terminals p, q and r. It can also be shown that the total length of segments ps,qs and rs is equal to the length of segment repq, which is also known as the Simpson linefor the FST over terminals p, q and r.
pq

r

e
pq

opq

s

Figure 2.6: Simpson line construction of Steiner point.
Any FST can be constructed via recursive application of this principle. If terminals pand q are both adjacent to Steiner point s, then points p, q, s and their adjoining segmentsps, qs and rs can be replaced with point epq and segment repq. The procedure is iterateduntil only a single Simpson line (from an equilateral point to a terminal) remains. Figure 2.7presents an example in which the entire FST is represented by the Simpson line from z6 toe4. The resulting FST of terminals z1 through z6 is illustrated with bold lines. Figure 2.8

2.3. Euclidean FST Generation 17shows the tree structure by which the equilateral points e1 through e4 are derived. Forexample, e3 is constructed from base points e2 and e1 so that e3 = ee2 e1 .
z1

z2 z3

z4

z5
z6

e1 e2

e3

e4

Figure 2.7: Construction of FST from recursiveequilateral points.

e4

e3 z5

e2 e1

z4 z3 z2 z1Figure 2.8: Tree structure ofequilateral points.In general, the base points of equilateral points can be either terminals or other equilat-eral points. For any equilateral point or terminal x we de�ne the order of x, ORD(x), to bethe maximum depth of the derivation tree by which point x is constructed. ConsequentlyORD(p) = 0 for all terminals p, and ORD(e) � 1 for all equilateral points e. For a givenpoint x (equilateral or terminal) the set of all terminals in x's derivation tree is denotedZ(x). Consequently, Z(p) = fpg for all terminals p.The key idea of Winter's Euclidean FST generation method is to generate all possibleequilateral points by combining pairs of existing equilateral points whose derivation treesare disjoint. When no new equilateral points are possible, the process terminates.A list E initially contains the terminals (i.e., equilateral points of zero order). For eachp; q 2 E an attempt is made to construct epq. Equilateral point epq is appended to E if

2.3. Euclidean FST Generation 18and only if Z(p) \ Z(q) = ;, jZ(p)j + jZ(q)j < n, and epq passes a series of pruning tests(described below). Each member p of E is given a distinct index variable ip that indicatesthe next member q 2 E to try combining with p. Whenever a new equilateral point p isadded to E , ip is initialized to point to the beginning of the list E . The process terminateswhen all of the ip have advanced to the end of the list E . This guarantees that each pair(p; q) is tested exactly once.This process would create a combinatorial explosion of equilateral points, except thatthe pruning tests are e�cient and highly e�ective at identifying equilateral points thatcannot give rise to valid FSTs. Such equilateral points are not retained. Note that whenan equilateral point e is pruned it eliminates the need to ever consider any other equilateralpoint having e's derivation tree as a subtree.Let exy be an equilateral point of non-zero order with base points x and y. In mostcases it is possible to deduce that any Steiner point on cxy would be invalid unless con�nedto a subarc dx0y0 of cxy. Consequently each such exy 2 E has an associated feasible Steinersubarc dx0y0 that is a subarc of cxy. Most of the pruning tests work by further restricting thefeasible Steiner subarc. If this subarc becomes empty, exy can be pruned.Once all equilateral points have been generated, it is easy to contruct all of the FSTs.Let exy 2 E . For every terminal v 62 Z(exy), the corresponding FST exists if and only if linesegment vexy intersects the feasible Steiner subarc dx0y0 of exy. To obtain the FST, processSimpson line vexy recursively as follows: a Simpson line ze (where z is a known point ande an equilateral point) results in line segment ze if e is of zero order. Otherwise e = epq, solet s = ze \ cpq, add line segment zs to the FST, and process sp and sq recursively. Notethat by symmetry, it is necessary to consider only v 62 Z(epq) whose index exceeds that ofall terminals in Z(epq), according to an arbitrary ordering of the terminals.We now very briey present several of the pruning tests that equilateral points mustpass in order to be retained in E . For the complete discussion including additional tests,see [62].

2.3. Euclidean FST Generation 192.3.1 ProjectionsLet p and q be two equilateral points and suppose that p is of nonzero order. Let a and cbe the base points of p so that p = eac. Furthermore, let da0c0 be the feasible Steiner subarcof eac. The relative locations of a0 and c0 with respect to p and q can be used to rule outportions of Steiner arc cpq, thus reducing the feasible Steiner subarc. In most cases it can beshown that any Steiner point on cpq would violate an angle condition, indicating that epq canbe pruned. In fact, only four speci�c subcases are retained. These cases are (Figure 2.9):1. 0� < 6 c0 p q � 6 a0 p q � 120�, q is not in the interior of Cac, a0 is not in the interior ofCpq, and c0 is in the interior of Cpq. Only the portion cxq0 of cpq that is outside of Cacand visible from p through da0c0 is feasible.2. 6 c0 p q � 0� < 6 a0 p q � 60�, q is not in the interior of Cac, and a0 is not in the interiorof Cpq. Only the portion cxq of cpq that is outside of Cac is feasible.3. 0� < 6 c0 p q � 6 a0 p q � 60�, q is not in the interior of Cac, and a0 is in the interior ofCpq. Only the portion dp0q0 of cpq that is visible from p through da0c0 is feasible.4. 6 c0 p q � 0� < 6 a0 p q � 60�, q is not in the interior of Cac, and a0 is in the interior ofCpq. Only the portion cp0q of cpq that is visible from p through da0c0 is feasible.A point x 2 cpq is visible from p through a point y if and only if x is the projection of yonto cpq from p. This is why these tests are called the projection tests. The arguments arecompletely symmetric if q is an equilateral point of nonzero order.2.3.2 Lune PropertyEvery line segment in an FST must satisfy the lune property (i.e., no terminal may re-side in the lune of an FST line segment). Let L(u; v) be the lune for segment uv (i.e.,L(u; v) = fx : juxj < juvj ^ jxvj < juvjg). Let p and q be equilateral points of any order.Let the feasible Steiner subarc of cpq be ctu. Let s 2 ctu be a potential Steiner point on this

2.3. Euclidean FST Generation 20
pq

e
pq

aa’

c
c’

q’ x

1

pq

e
pq

a

a’

c

c’

x

2
pq

e
pq

a
a’

c

c’

p’

q’

3

pq

e
pq

a
a’

c

c’

p’

4Figure 2.9: Projections: four cases retained.

2.3. Euclidean FST Generation 21arc. Then two of the segments incident to s will be known, one directed toward p, the othertoward q. Let Ep(s) and Eq(s) be the other end point of the line segment directed towardp and q, respectively. If p (or q) happens to be a terminal then Ep(s) = p (or Eq(s) = q).Otherwise p = ebd (or q = eac) is an equilateral point of non-zero order and Ep(s) = sp\cbd(or Eq(s) = sq \ cac). If L(s;Ep(s)) or L(s;Eq(s)) contain one or more terminals then wecan conclude that s is not a feasible Steiner point.In particular, if s = t causes non-empty lunes then we can further restrict the feasibleSteiner subarcctu by moving t toward q to the �rst position t0 at which both lunes L(t0; Ep(t0))and L(t0; Eq(t0)) are empty. Similary, if L(u;Ep(u)) or L(u;Eq(u)) are non-empty, we canmove u toward p to the �rst position u0 at which both L(u0; Ep(u0)) and L(u0; Eq(u0)) areempty. This can actually done in four sequential steps: move t until L(t; Eq(t)) is empty,move u until L(u;Eq(u)) is empty, move t until L(t; Ep(t)) is empty, move u until L(u;Ep(u))is empty.Figure 2.10 illustrates the �rst two of these steps. In this �gure, x = Eq(t), y = Eq(u),and z is a terminal that makes the corresponding lune non-empty. Figure 2.10a moves t tot0 such that L(t0; Eq(t0)) is empty, and Figure 2.10b moves u to u0 such that L(u0; Eq(u0)) isempty. Note that emptying one lune in this way can cause another to become non-empty,so these tests can be iterated until all four lunes are empty. Of course the equilateral pointepq can be pruned immediately if the feasible arc cut becomes empty during this process.2.3.3 Bottleneck PropertyLet p and q be equilateral points of any order. Let ctu be the feasible Steiner subarc ofcpq. Let x = Eq(t) as in Subsection 2.3.2. Let zp 2 Z(p) and zq 2 Z(q) such that bzpzq isminimized. If bzpzq < jxtj;then t is not a feasible location for a Steiner point, since the bottleneck property is violatedby segment xt along the path between zp and zq. Point t can be moved toward q until

2.3. Euclidean FST Generation 22
pq

a

c

y

x

u t’
t

z

(a) pq
a

c

y

x

u
u’

t

z

(b)Figure 2.10: The lune property.equality is achieved (or t moves beyond u). The test is symmetric for segment yu, wherey = Ep(u).2.3.4 Wedge PropertyLet p and q be equilateral points of any order. Let ctu be the feasible subarc of Steiner arccpq. Construct the four rays r1 = ~pu, r2 = ~epqu, r3 = ~epqt and r4 = ~qt (see Figure 2.11). LetR1 be the region bounded by r2, r3, and ctu. Let R2 be the region bounded by r1 and r2.Let R3 be the region bounded by r3 and r4.If R1 contains no terminals then any Steiner point s 2 cut must connect to some otherSteiner point s0 in R1. Since R1 contains no terminals, Steiner point s0 resides on theSteiner arc of some equilateral point eac 2 R1. It can be shown that such an eac cannot beconstructed unless there is at least one terminal in R2 and at least one terminal in R3. Ifeither R2 or R3 is empty then equilateral point epq can be pruned.Suppose on the other hand that region R1 contains at least one terminal. If R2 is empty,let z be a terminal in R1 that minimizes 6 z epq u, and let u0 = zepq \ctu. Then the feasible

2.3. Euclidean FST Generation 23

pq

e

u
t

pq

r1

r2

r3

r4

R2
R1

R3

Figure 2.11: The wedge property.subarc can be narrowed to ctu0. In similar fashion if R3 is empty, let z be a terminal in R1that minimizes 6 t epq z, and let t0 = zepq \ctu. Then the feasible subarc can be narrowed toct0u.2.3.5 Euclidean Compatibility TestsTwo FSTs Fi and Fj are incompatible if they intersect anywhere other than at a singleterminal. If Fi and Fj meet at a single terminal v, they can be declared incompatible iftheir line segments form an angle of less than 120� at v.

2.4. Rectilinear FST Generation 24There are other pruning and compatibility tests that can be used. For complete details,refer to [62].2.4 Rectilinear FST GenerationWe now give a brief overview of the FST generation process for the rectilinear distancemetric. These results were previously given in Salowe and Warme [49], and are presentedhere for completeness only. The more recent methods of Zachariasen [64] are superior, andrepresent the current state of the art.2.4.1 Hwang TopologiesHwang [27] provided a complete description of the rectilinear FSTs, a result known asHwang's theorem:Theorem 2.2 (Hwang's theorem) Every rectilinear full set has a rectilinear Steinerminimal tree having one of four topologies. A type I topology consists of a backboneformed by two segments (a long leg and a short leg) meeting at a corner and adjacent totwo of the terminals1. The long leg is incident to segments connecting the other terminalsto the backbone. (Assume without loss of generality that the long leg is horizontal.) Fromleft to right, these terminals (and the terminal on the short leg) must appear on alternatingsides of the long leg. A type II topology is similar to a type I topology, but with a singleterminal | the leftmost (or rightmost) | connected to the short leg. A degenerate type I(or straight) topology is similar to a type I topology, but having a short leg of zero length andtherefore no corner. A cross topology has exactly 4 terminals connected by one horizontaland one vertical segment that meet at a single Steiner point of degree 4.1The term long leg does not imply greater length geometrically, but rather having a potentially greaternumber of incident segments.

2.4. Rectilinear FST Generation 25See Figure 2.12 for examples of all four types of topologies. The straight and crosstopologies are degenerate cases that appear only when V contains terminals with duplicatex or y coordinates. Note that in general, type I and type II topolgies can have four di�erentorientations times two reections each, while straight topologies can be either horizontal orvertical.
Type I topology Type II topology
Straight topology CrossFigure 2.12: The Hwang topologies.

There is some ambiguity in this classi�cation scheme. For example, a non-degenerateFST with 3 terminals could be classi�ed as either a type I or type II topology, dependingon which segment is called the long leg. Similarly, in a type II topology with 4 terminalseither of two segments can be called the long leg. The classi�cation is unique, however, for5 terminals or more.

2.4. Rectilinear FST Generation 262.4.2 Corner-Flipped TopologiesThere are two transforms that can be applied to a Hwang type I or type II topology thatdo not change its length | the corner ip and the slide. By iteratively applying thesetwo transformations, the Hwang topology can be converted �nally into yet another Hwangtopology, having an orientation di�erent from the original. This process is illustrated inFigure 2.13, in which a Hwang type II topology is transformed into a Hwang type I topologyof the same length.
1 =) 2 =) 3 =)
4 =) 5 =) 6Figure 2.13: The corner-ip and slide transforms.In general, any Hwang type I or type II topology X can be transformed to anotherHwang topology X̂ in this way. We say that X̂ is the corner-ipped topology of X. Ofcourse these transformations work just as well in reverse, so it is also true that X is thecorner-ipped topology of X̂. Let a Hwang topology be even (or odd) if it has an even (orodd) number of alternating terminals attached to the long leg. Then we can characterize allsuch transformations as shown in Figure 2.14. If X is a straight topology or a cross thenwe let X̂ = X since there is no corner at which to begin the ip and slide transform.

2.4. Rectilinear FST Generation 27
Type I Even () Type I Even
Type I Odd () Type II Even
Type II Odd () Type II OddFigure 2.14: The corner-ipped topologies.Suppose X is a Hwang topology and X̂ is its corner-ipped topology. If it can be shownthat X̂ cannot be an FST, then we can also conclude that X cannot be an FST. Thereforewhen generating FST X we can usually make our screening tests more e�ective by applyingthem to both X and X̂.2.4.3 Empty RegionsLet X be a Hwang topology. The lune property of Section 2.2.1 implies that X cannotbe an FST if any of the lunes (i.e., corner lunes or diamonds) de�ned by its segments arenon-empty. Neither can X be an FST if the corner-ipped topology X̂ has non-emptydiamonds.It is known (e.g., [5, 49, 64]) and easy to show that certain rectangular regions mustalso be empty. Let X be a Hwang topology containing segments ab and bc that form a 90�

2.4. Rectilinear FST Generation 28angle at point b. Points a and c can be either terminals or Steiner points, but there mustnot be any terminals or Steiner points in the relative interior of segments ab or bc. Point bcan be a terminal, Steiner point or backbone corner. Let d be the point obtained by addingthe vector a � b to point c, so that abcd forms a rectangle. If there are terminals in theinterior of rectangle abcd then FST X cannot be part of an SMT for V . See Figure 2.15.
t

b

a

c

d

Figure 2.15: Empty rectangles.Proof : Suppose X is part of an SMT for V , and that a terminal t lies inside rectangleabcd and above the diagonal extending from b into the rectangle as shown in Figure 2.15.Delete segment ab from the tree. If t is in the same connected component as a, thenreconnect by adding a vertical segment from t down to segment bc. Otherwise, reconnectby connecting a and t. The tree is shortened in either case, a contradiction. A similarargument applies if t lies below the diagonal line. Now suppose t lies precisely on thediagonal. Since t must be connected to the rest of the tree using only horizontal andvertical segments, there must be some other point u in the tree that lies above or below thediagonal line that we can use to shorten the tree in the same manner. 2As a result, Hwang topologies (and their corner-ipped topologies) must have bothempty diamonds, and empty rectangles in order to be an FST. This is illustrated inFigure 2.16. Some additional empty regions are described by Salowe and Warme [49].

2.4. Rectilinear FST Generation 29Empty Diamonds Empty Rectangles

Combined
Figure 2.16: Hwang topology empty regions.2.4.4 Generating Rectilinear FSTsHwang's theorem tells us that every valid full set will have at least one FST having one of thefour Hwang topologies. We can guarantee, therefore, that by �nding all topologies havingone of these con�gurations we will have found all full sets (plus perhaps other subsets thatare not full sets, which is why they are candidate full sets). Perhaps even more importantly,this approach automatically gives us a full Steiner tree for each such candidate full set.The Salowe-Warme algorithm [49] generates FSTs by considering all pairs (a; b) of ter-minals as backbones for Hwang topologies. The backbone for (a; b) consists of a verticalline segment incident to a and a horizontal line segment incident to b. These segments meetat a common corner point c = (ax; by). Note that backbone (b; a) represents the corner-ipof backbone (a; b). Because of the symmetry provided by the corner-ip transform, we need

2.4. Rectilinear FST Generation 30consider only pairs (a; b) whose horizontal segment lies to the right of the vertical segment.Each backbone (a; b) is considered twice: once considering the vertical segement to be thelong leg, and once considering the horizontal segment to be the long leg.Consider a backbone (a; b) with corner c (as shown in Figure 2.17) such that segment cbis the long leg. Consider the set A of all terminals in the shaded region that de�ne an emptydiamond when connected to the long leg cb with a vertical line segment. The terminals inA are the candidates for attaching to the long leg of the backbone. Consider also the set Bof all terminals in the shaded region of Figure 2.18 that similarly de�ne empty rectangleswhen connected to short leg ac with a horizontal segment. The terminals in B are thecandidates for optionally attaching to the short leg. Each properly alternating combinationof attached terminals from A is tried in turn, resulting in a Type I topology. If it survivesall of the screening tests it is retained as an FST. Each t 2 B is then attached to the shortleg in turn, resulting in a Type II topology. Any of these that survive all of the screeningtests are then retained as an FST. Recursive enumeration starts at the corner and proceedsdown the long leg away from the corner. This makes it easy to guarantee that the candidatenearest the corner is on the proper side of the long leg.
a

bc

Figure 2.17: Long leg candidateregion.
b

a

c

Figure 2.18: Short leg candidate region.

2.4. Rectilinear FST Generation 31Generating the straight and cross topologies can be done as an easy special case. Sortthe terminal set lexically by x/y and by y/x coordinates (major/minor keys). Then O(n)more time is su�cient to �nd the set of all horizontal and vertical segments (if any) boundedby pairs of terminals with no terminals in the interior. Crosses can be discovered in O(n2)time by considering each pair of such horizontal and vertical segments. Those that formcrosses and pass the screening tests are retained as FSTs.Each horizontal or vertical segment uv is then considered as the backbone of a straighttopology. Recursive enumeration of topologies is then very similar to the type I/type IIcase, with two exceptions: no short leg candidates are tried since there is no short leg;secondly both alternating directions are valid starting points, since there is no corner.
2.4.5 Screening TestsLet X be a generated Hwang topology over terminals U � V , and let X̂ be its corner-ippedtopology. We check that X̂ is a proper Hwang topology (for example, terminals might notproperly alternate down the long leg). No terminal may lie in the interior of any segments ofX or X̂ . No terminal may lie in any of the \empty regions" of X or X̂ . The BSD propertymust hold for each segment of X and X̂. The MST of U computed with bottleneck Steinerdistances must not be shorter than X. An SMT for U computed via a heuristic (such asthe 1-Steiner heuristic of Kahng and Robins [32]) must not be shorter than X. If any ofthese conditions are violated, X may be discarded. Otherwise, X is retained as an FST.Note that some of these checks can be made while recursively enumerating combinationsof long leg candidates. For example if two consecutive alternating terminals delimit asegment on the backbone that de�nes a non-empty diamond or is longer than bab then therecursive enumeration can be cut o�.

2.4. Rectilinear FST Generation 322.4.6 Rectilinear Compatibility TestsTwo FSTs Fi and Fj are incompatible if they intersect anywhere other than at a singleterminal. This check is repeated for F̂i and Fj , Fi and F̂j , and for F̂i and F̂j . Suppose Fiand Fj meet at a single terminal and S = (Fi [Fj) \ V is the union of their terminals.If a heuristic �nds an RSMT for S that is shorter than jFij + jFj j, then Fi and Fj areincompatible.Refer to Zachariasen [64] for the state of the art in rectilinear FST generation. Hismethod considers only O(n) backbone roots instead of O(n2) backbones, uses good boundsto constrain candidate choices for the long and short legs, and uses good sweep-line al-gorithms (instead of brute force) for checking empty regions. Using these techniques, therectilinear FSTs for a random 1000 terminal instance are generated in less than a minuteon average (compared to 3.5 hours using the Salowe-Warme algorithm).The rest of the dissertation focuses on FST concatenation, which we solve in the nextchapter by reducing it to �nding a minimum-weight spanning tree in a hypergraph. Forfurther details on FST generation, incompatibility testing and pruning, refer to [11, 16, 48,49, 60, 62, 64].

3
The Spanning Tree in Hypergraph Problem

This chapter de�nes hypergraphs, their notation, and the spanning tree in hypergraphproblem. It is shown that the problem of deciding even the existence of a spanning treein an arbitrary hypergraph is NP-complete. The spanning tree in hypergraph problem isthen motivated by showing that FST concatenation can be reduced to that of �nding aminimum-weight spanning tree (MST) in a hypergraph. The MST in hypergraph prob-lem is then formulated as an integer program using subtour elimination constraints. Thespanning tree in hypergraph polytope STHGP(n) is introduced and a number of its moreimportant properties are proven. In particular it is shown that all of the constraints usedin the integer programming formulation de�ne facets of STHGP(n). An alternate integerprogramming formulation using cutset constraints is also presented. It is shown that thisformulation is \inferior" to the subtour formulation in the sense that its LP relaxation isweaker. Furthermore, it is shown that cutset constraints do not de�ne facets of STHGP(n),except in the special case of the one-terminal cutsets. Finally, a simple formula that extendsa classic result from graphs to hypergraphs is presented.33

3.1. De�nitions 343.1 De�nitionsThe following de�nitions are adapted from Berge [4]. Let V be a �nite set and E � 2V .Then H = (V;E) is a hypergraph if jej � 2 for all e 2 E (3.1)Normally we require only e 6= ; for all e 2 E [4] but, since our present concern is spanningtrees, we assume the tighter restriction of (3:1). In keeping with graph theory we will uselower case letters to denote hyperedges | even though they are sets, which would normallybe denoted with capital letters. We say that e is a k-edge of H if e 2 E and jej = k. Ina hypergraph H = (V;E), a chain of length q from v0 to vq is de�ned to be a sequencev0; e1; v1; e2; v2; : : : ; eq; vq such that1. v0; v1; : : : ; vq 2 V ,2. v0; v1; : : : ; vq�1 are distinct,3. v1; v2; : : : ; vq are distinct,4. e1; e2; : : : ; eq 2 E and are distinct, and5. vi�1 2 ei ^ vi 2 ei for i = 1; 2; : : : ; q.If q > 1 and v0 = vq, then this chain is called a cycle of length q. We may omit either orboth of the phrases \length q" and \from v0 to vq" when they are apparent or arbitrary.Hypergraph H 0 = (V 0; E0) is a subhypergraph of hypergraph H = (V;E) if V 0 � V , andfor every e0 2 E0 there is an e 2 E such that e0 = e \ V 0 and je0j � 2. A hypergraphH = (V;E) is connected if for every s; t 2 V there is a chain from s to t in H. A hypergraphH = (V;E) is a tree if for every s; t 2 V there is a unique chain from s to t inH. HypergraphH 0 = (V;E0) is a spanning tree of H = (V;E) if E0 � E and H 0 is a tree.

3.1. De�nitions 35If w is a function de�ned on E then for any subset F � E we de�ne w(F) = Pe2F we.For any S;A;B � V , de�neE(S) � fe 2 E : e � Sg;E(S)k � fe 2 E : e � S ^ jej = kg;�(S) � fe 2 E : 1 � je \ Sj < jejg;�(S)k � fe 2 E : 1 � je \ Sj < jej = kg;(A : B) � fe 2 E : (e \A 6= ;) ^ (e \B 6= ;)g;(A : B)k � fe 2 (A : B) : jej = kg:We call (S : V � S) a cut with shores S and V � S.The following is an example of a hypergraph:H = (V;E),V = fa; b; c; d; e; f; g; h; i; j; k; lg,E = fe1; e2; e3; e4; e5; e6; e7; e8; e9g,e1 = fa; b; dg, e4 = fb; hg, e7 = ff; h; jg,e2 = fa; c; dg, e5 = fe; f; gg, e8 = fj; k; lg,e3 = fd; eg, e6 = fc; ig, e9 = fg; i; jg.This hypergraph is illustrated in Figure 3.1, where hyperedges are denoted by encircling themember vertices. Note that H is connected, but contains cycles (e.g., f; e5; g; e9; j; e7; f).Figure 3.2 is a subhypergraph of H and also a tree | making it a spanning tree of H.Figure 3.3 is another subhypergraph of H that is not connected, and contains a cyclea; e1; d; e2; a. Note that if for some hypergraph H 0 = (V 0; E0), there are e; f 2 E0 such thatje \ f j > 1, then H 0 has at least one cycle and cannot be a tree.

3.1. De�nitions 36
a d e

c

b

f

g

h

i

j

k

l

Figure 3.1: Example hypergraph H.
a d e

c

b

f

g

h

i

j

k

l

Figure 3.2: Example spanning tree of H.
a d e

c

b

f

g

h

i

j

k

l

Figure 3.3: Example non-tree subhypergraph of H.

3.2. Spanning Tree in Hypergraph is NP-Complete 373.2 Spanning Tree in Hypergraph is NP-CompleteThis section de�nes the spanning tree in hypergraph problem and shows that it is stronglyNP-complete.Problem Spanning Tree in Hypergraph (STHG):Given: A hypergraph H = (V;E).Question: Is there an E0 � E such that H 0 = (V;E0) is a tree?Tomescu and Zimand [55] have shown that for every h � 3, the problem of deciding theexistence of a spanning tree in an h-uniform hypergraph (where jej = h for all e 2 E) isNP-complete. Their proof uses a rather complicated reduction from 3SAT. Here is a verysimple and elegant proof for the h = 4 case that was devised by Thomas McCormick [39].It reduces from exact 3 cover which is well-known to be NP-complete [33]:Problem Exact 3 Cover:Given: A �nite set S with jSj = 3k, a family F of 3-element subsets of S.Question: Is there a subfamily C � F that partitions S?Theorem 3.1 The spanning tree in hypergraph problem is NP-complete.Proof : Given an instance (S; F) of exact 3 cover, construct an instance H = (S0; F 0) ofspanning tree in hypergraph as follows. Let v be an item such that v =2 S, let S0 = S [fvg,and let F 0 = fe [fvg : e 2 Fg.If C is a partition of S then the corresponding C 0 de�nes a spanning tree (S0; C 0) of H.Conversely, let H 0 = (S0; C 0) be a spanning tree of H. Since every a0; b0 2 C 0 both containv, the corresponding a; b 2 F must be disjoint. Therefore, the C that corresponds to C 0must partition S, since H 0 spans S0. 2It follows that the corresponding optimization problem is NP-hard:

3.3. Reduction From FST Concatenation to MST in Hypergraph 38Problem Minimum Spanning Tree in Hypergraph (MSTHG):Given: A hypergraph H = (V;E), edge weights ce 2 Z+ for all e 2 E.Find: E0 � E that minimizes c(E0) such that H 0 = (V;E0) is a tree.3.3 Reduction From FST Concatenation to MST in Hyper-graphIn this section we motivate the study of the MST in hypergraph problem by showing thatwe can use it to solve the Steiner tree problem. A simple reduction from FST concatenationto MST in hypergraph is presented and shown to be correct.We are given a �nite set V of terminals and a corresponding set F of FSTs. A sub-set F 0 � F is non-overlapping if (F \ G) � V for every F;G 2 F 0 such that F 6= G.Otherwise we say that F 0 is overlapping. We assume that F contains at least one non-overlapping subset F 0 such that T 0 = [F 0 is a Steiner minimal tree for V . For any F 2 Fwe de�ne g(F) = F \ V : the set of terminals spanned by F . For any F 0 � F we de�neg(F 0) = fg(F) : F 2 F 0g. Let E = g(F). We assume without loss of generality thatg(F) 6= g(G) for all F;G 2 F such that F 6= G; if more than one FST exists for a givenS � V , then any shortest FST spanning S can be chosen arbitrarily. Therefore g : F 7! Eis an isomorphism. Let g�1 : E 7! F be the inverse mapping of g. For any E0 � E wede�ne g�1(E0) = fg�1(e) : e 2 E0g.Theorem 3.2 Let V be a �nite set of terminals, and F be a corresponding set of FSTs for Vhaving at least one non-overlapping subset F 0 � F such that T 0 = [F 0 is a Steiner minimaltree for V . Let E = g(F), hypergraph H = (V;E) and c 2 RjEj such that cg(F) = jF j forall F 2 F . Let H� = (V;E�) be a spanning tree of H that minimizes c(E�), F� = g�1(E�)and T � = [F�. Then T � is a Steiner minimal tree for V .Proof : Let E0 = g(F 0). The Steiner minimal tree T 0 corresponds in a clear wayto a spanning tree H 0 = (V;E0) of H. We have jT 0j = c(E0) since the members of F 0

3.4. Integer Programming Formulation 39intersect only at terminals, which are segments of length zero. Any MST forH will thereforehave weight at most jT 0j. Let H� = (V;E�) be any MST for H, F� = g�1(E�) andT � = [E�. If F� is overlapping then either jT �j <PF2F� jF j = c(E�) � c(E0) = jT 0j (dueto overlaps of non-zero length), or T � must have a cycle, implying that jT 0j < jT �j � c(E�)| a contradiction in either case. Therefore, F� is non-overlapping, and spanning tree H�corresponds in a clear way to T �, which must be a tree connecting V such that jT �j � jT 0j.Since T 0 is a shortest such tree, we have jT �j = jT 0j. 2If an FST incompatibility relation C � F�F is available, we reduce it to the correspond-ing relation Ĉ � E �E over the hyperedges in the obvious way: LetĈ = f(g(Fi); g(Fj)) : (Fi; Fj) 2 Cg: (3.2)3.4 Integer Programming FormulationThis section presents an integer programming formulation of the minimum spanning treein hypergraph problem. Let H = (V;E) be a hypergraph, and c 2 RjEj be a vector suchthat ce is the weight of edge e for all e 2 E. Let n = jV j, m = jEj and polytope P be theset of all x 2 Rm that satisfy the following constraints:Xe2E(jej � 1)xe = jV j � 1; (3.3)Xe2Emax(je \ Sj � 1; 0)xe � jSj � 1 for all S � V with 2 � jSj < jV j; (3.4)xe � 0 for all e 2 E: (3.5)Theorem 3.3 Let x be a solution to the following integer program:min fc x : x 2 P \ Zmg (3.6)

3.5. The Spanning Tree in Hypergraph Polytope: STHGP(n) 40and let E0 = fe 2 E : xe = 1g. Then hypergraph H 0 = (V;E0) is a minimum spanning treeof H.Proof : Let e 2 E. We �rst show that (3.4) and (3.5) imply xe � 1. Choose any S � esuch that jSj = 2. Then (3.4) becomes xe + z � 1, where z are the remaining terms whichare all non-negative because of (3.5).The integrality constraint of (3.6) together with 0 � xe � 1 assure that each e 2 E iseither included in E0 or not. We prove in Section 3.5 that equation (3.3) is satis�ed by everyspanning tree. It requires exactly the right number and size of hyperedges to guarantee thatH 0 either has a cycle and is disconnected, or is acyclic and connected (i.e., a tree). As wealso show in Section 3.5, constraints (3.4) prohibit cycles by forcing the subhypergraphinduced by each subset of 2 or more vertices to be acyclic. 23.5 The Spanning Tree in Hypergraph Polytope: STHGP(n)This section de�nes the spanning tree in hypergraph polytope, STHGP(n), and proves anumber of its properties. The principal goal here is to show that (3.3) is the a�ne hull ofSTHGP(n), and that (3.4) and (3.5) de�ne facets of STHGP(n). This is important becauseit shows that these constraints are as tight as possible | they cannot be made any morerestrictive without eliminating one or more valid spanning trees from consideration.3.5.1 De�nitionsLet d > 0 be an integer and P = fp1; p2; : : : ; pkg be a �nite set of points in Rd . A point xis a linear combination of P if x = kXi=1 �i pi;where �i 2 R for 1 � i � k. If Pki=1 �i = 1, then x is also called an a�ne combination ofP . If we also have �i � 0 for 1 � i � k, then x is a convex combination of P . The set P

3.5. The Spanning Tree in Hypergraph Polytope: STHGP(n) 41is said to be linearly (or a�nely) dependent if there is a pi 2 P that is a linear (or a�ne)combination of P n fpig. Otherwise, P is linearly (or a�nely) independent. The set of all xsuch that x is an a�ne, or convex combination of P is called the a�ne hull a�(P), or convexhull conv(P), respectively. A point p 2 P is said to be extreme if conv(P) 6= conv(P n fpg).For 0 � k � d, a k-at in Rd is de�ned as the a�ne hull of k + 1 a�nely independentpoints. A (d � 1)-at in Rd is called a hyperplane. A set P is said to be of dimension kdim(P) = k if there is a k-at that contains P , but no (k � 1)-at. A k-at therefore hasdimension k. A hyperplane h may be speci�ed as h = fx 2 Rd : a x = bg, where a 2 Rd is anon-zero vector normal to h, and b 2 R. If jjajj = 1 then b is the distance (in the directionof a) from the origin to h. The set X formed by the intersection of k hyperplanes in Rd ,whose normal vectors are a�nely independent is a (d � k)-at. For all p 2 Rd and � > 0,de�ne B(p; �) = fx 2 Rd : jx� pj < �g, that is, the open ball of radius � centered at point p.A polyhedron is the intersection of a �nite number of linear half-spaces. A polytope isa polyhedron that is bounded. Alternatively, a polytope can be de�ned as the convex hullof a �nite set of points. Let P be a polytope of dimension d. A point p 2 P is an interiorpoint of P if there is an � > 0 such that B(p; �) � P . If no such � exists, p is said to be aboundary point of P . The set of all such interior (or boundary) points is called the interior(or boundary) of P . There is one d-face of P , namely P itself. Let h be a hyperplane and fbe the intersection of h with the boundary of P . If dim(f) = d� 1, we call f a d� 1-face ofP . In general, if f1 and f2 are k-faces of P and g = f1 \ f2 is of dimension k � 1, then g isa k� 1-face of P . A k-face of P is itself a polytope of dimension k. We call the d� 1-facesof P facets, the d � 2-faces ridges, the 1-faces edges, and the 0-faces vertices, or extremepoints.We de�ne hypergraph Kn = (V;E) such that jV j = n and E = fe � V : jej � 2g.Let m = jEj = 2n � n � 1. To every subhypergraph H 0 = (V;E0) of Kn = (V;E), weassociate an incidence vector x 2 f0; 1gm de�ned by xe = 1 if e 2 E0 and 0 otherwise. LetSTn � f0; 1gm denote the set of incidence vectors of spanning trees of Kn.

3.5. The Spanning Tree in Hypergraph Polytope: STHGP(n) 42De�ne STHGP(n) = conv(STn).3.5.2 Dimensionality of STHGP(n)Theorem 3.4 Let n � 2, (V;E) = Kn and x 2 STn, thenXe2E (jej � 1)xe = jV j � 1: (3.7)Proof : Let T = (V;E0) be the hypergraph corresponding to x. ThenXe2E(jej � 1)xe = Xe2E0(jej � 1):From [4] we know that a hypergraph (V;E0) is acyclic if, and only if,Xe2E0(jej � 1) = jV j � p; (3.8)where p is the number of connected components. Since spanning trees are both connectedand acyclic, we have p = 1. 2Remark: Equation (3.8) can be shown directly by simple induction on the hyperedges.The induction step is analogous to a single iterative step of Kruskal's algorithm for theminimum spanning tree [35].Theorem 3.4 gives a linear equation satis�ed by all x 2 STn. We now show there are noother such linear equations. To do this, we will need two lemmas.Lemma 3.1 Let T 1 = (V;E1 [E2) and T 2 = (V;E1 [E3) be two spanning trees withcorresponding incidence vectors x1 and x2, such that E1 is disjoint from E2 [E3. If x1 andx2 both satisfy a linear equation c x = b, thenXe2E2 ce = Xe2E3 ce: (3.9)

3.5. The Spanning Tree in Hypergraph Polytope: STHGP(n) 43Proof : c x1 = b and c x2 = b=) c x1 = c x2=) Xe2E1[E2 ce = Xe2E1[E3 ce=) Xe2E2 ce = Xe2E3 ce;since E1 is disjoint from both E2 and E3. 2Lemma 3.2 Let n � 3 and (V;E) = Kn. If c x = b is any linear equation satis�ed by everyx 2 STn then there is an � such that ce = �(jej � 1) for every e 2 E, and b = �(n� 1).Proof : Let c and b be as stated. Let e1; e2 2 E(V)2. We �rst show that ce1 = ce2 .Let S � V be a cut of V crossed by both e1 and e2 (i.e., e1; e2 2 (S : V � S)). Asuitable cut S always exists when n � 3. Construct spanning trees S1 = (S;E1) andS2 = (V � S;E2) for each side of the cut using only 2-edges. We can now constructspanning trees T 1 = (V;E1[fe1g[E2) and T 2 = (V;E1[fe2g[E2) for V having incidencevectors x1 and x2, respectively. By Lemma 3.1 we must have ce1 = ce2 . Let � = ce1 .Certainly ce = �(jej � 1) holds for every 2-edge e 2 E. We deduce that b = �(n � 1) bynoting that we can construct spanning trees for V entirely out of (n� 1) 2-edges.Let T 3 = (V;E3) be a spanning tree, e 2 E3 and let k = jej. Let x3 be the incidencevector of T 3. We can construct a new spanning tree T 4 by replacing e with any spanningtree constructed using only (k � 1) 2-edges from E(e)2. Let x4 be the incidence vector ofT 4, then by Lemma 3.1 we have ce = (k � 1)� = (jej � 1)�, which completes the proof. 2Theorem 3.5 dim(STHGP(n)) = 2n � n� 2 for n � 2. (3.10)Proof : For n = 2, jST2j = 1 so that STHGP(2) is a single point with dimension 0 andthe theorem holds. Now suppose n � 3. Theorem 3.4 gives one linear equation satis�ed by

3.5. The Spanning Tree in Hypergraph Polytope: STHGP(n) 44every x 2 STn and lemma 3.2 shows that there are no other such linear equations. Thereforedim(STHGP(n)) = m� 1 = 2n � n� 2. 2Corollary 3.5.1 Let h be the hyperplane satisfying (3.7). Then h = a�(STHGP(n)).Theorem 3.6 Every x 2 STn is an extreme point of STHGP(n).This is clearly true of any x 2 X and polytope P = conv(X), where X is any subset ofvertices of the hypercube.Corollary 3.6.1 If x 2 STn then x cannot be expressed as a convex combination of theelements of STn n fxg.3.5.3 Non-Negativity Constraints are Facet-De�ningTo prove that the non-negativity constraints (3.5) are facet-de�ning, we will need twolemmas:Lemma 3.3 Let n � 4, (V;E) = Kn and let e; e1; e2 2 E be distinct edges such thatje1j = je2j = 2. Then there is an S � V such that 1 � jSj < n with the following properties:1. e1; e2 2 (S : V � S),2. There exist spanning trees S1 = (S;E1) and S2 = (V � S;E2) such that E1 � E(S)2and E2 � E(V � S)2,3. e =2 E1 and e =2 E2.We omit the details of the proof, except to note that if jej � 3 then property (iii) isautomatically satis�ed and we can assume without loss of generality that jej = 2. The restof the proof follows by case analysis for n = 4 and by induction for n � 5.

3.5. The Spanning Tree in Hypergraph Polytope: STHGP(n) 45Lemma 3.4 Let n � 4, (V;E) = Kn, e 2 E and let F = fx 2 STn : xe = 0g. If c x = b isany linear equation satis�ed by every x 2 F then there exists an � such that b = �(n � 1)and ce0 = �(je0j � 1) for all e0 2 E, e0 6= e.Proof : Let e1 and e2 be 2-edges distinct from e. By Lemma 3.3 there is a cut (S : V �S),1 � jSj < jV j crossed by both e1 and e2. Also by Lemma 3.3 there exist spanning treesS1 = (S;E1) and S2 = (V � S;E2) for S and V � S respectively, such that e =2 E1 ande =2 E2. Then T 1 = (V;E1 [fe1g [E2) and T 2 = (V;E1 [fe2g [E2) are spanning treesfor V that do not contain edge e. Let x1 and x2 be the incidence vectors corresponding toT 1 and T 2, respectively. We have x1; x2 2 F since x1e = x2e = 0 by construction, and soc x1 = b and c x2 = b. By Lemma 3.1 we have ce1 = ce2 , so every 2-edge e0 6= e thereforehas the same coe�cient ce0 = �.Let x3 2 F and T 3 = (V;E3) be its corresponding spanning tree. Let e0 2 E3 andk = je0j. Since x3 2 F we know e0 6= e. Construct a new spanning tree T 4 by replacing edgee0 with a spanning tree constructed using only 2-edges (k � 1 of them) from E(e0)2 n feg.Let x4 be the incidence vector of T 4. We have x3 2 F and x4 2 F by construction. ByLemma 3.1 we have ce0 = �(k � 1). Therefore ce0 = �(je0j � 1) for all e0 2 E, e0 6= e. Wemust have b = (n � 1)�, since a spanning tree for V can be always be constructed usingexactly n� 1 2-edges from E(V)2 n feg. 2Theorem 3.7 Let n � 4, (V;E) = Kn and let e 2 E. Then the inequality xe � 0 de�nes afacet of STHGP(n).Proof : First note that xe � 0 is satis�ed by every x 2 STn and is therefore a validinequality. Let F = fx 2 STn : xe = 0g and let c x = b be any linear equation thatis satis�ed by every x 2 F . By Lemma 3.4 we know that equation c x = b is such thatb = �(n � 1) and ce0 = �(je0j � 1) for all e0 2 E, e0 6= e. Equation c x = b can thereforebe obtained by taking � times Equation (3.7) plus ce � �(jej � 1) times equation xe = 0.

3.5. The Spanning Tree in Hypergraph Polytope: STHGP(n) 46The set F therefore has dimension m � 2 = dim(STHGP(n)) � 1, proving that xe � 0 isfacet-de�ning. 23.5.4 Subtour Constraints are Facet-De�ningIn order to prove that the subtour elimination constraints (3.4) are facet-de�ning, we needtwo lemmas.Lemma 3.5 Let n � 3, (V;E) = Kn and let S � V such that jSj � 2. Also, letF = fx 2 STn : Pe2Emax(je \ Sj � 1; 0)xe = jSj � 1g and c x = b be any linear equationsatis�ed by every x 2 F . Then there exist � and � such that:1. ce = � for all e 2 E(S)2,2. ce = � for all e 2 E(V)2 n E(S)2.Proof : We note that E(V)2nE(S)2 = �(S)2[E(V �S)2. For part 2 it therefore su�cesto show: (a) e1; e2 2 �(S)2 =) ce1 = ce2 ; (b) e1; e2 2 E(V �S)2 =) ce1 = ce2 ; and (c) thatthere is a e1 2 �(S)2 and a e2 2 E(V � S)2 such that ce1 = ce2 . Part 2 then follows bytransitivity of equality. We prove each of the 4 resulting cases by obtaining trees T 1 and T 2with corresponding incidence vectors x1 and x2 such that x1; x2 2 F and that di�er onlyby substituting edge e1 for e2 or vice versa. Then by Lemma 3.1 we have ce1 = ce2 .Case 1: Let e1; e2 2 E(S)2. The jSj = 2 case is trivial since there is only one suchedge. Otherwise jSj � 3 and there is a cut U � S such that e1; e2 2 (U : S � U)2.Let S1 = (U;E1), S2 = (S � U;E2) and S3 = (V � S;E3) be spanning trees such thatE1 � E(U)2, E2 � E(S � U)2 and E3 � E(V � S)2. Let e3 2 (U : V � S)2. ThenT 1 = (V;E1 [fe1g [E2 [fe3g [E3) and T 2 = (V;E1 [fe2g [E2 [fe3g [E3) are spanningtrees with the necessary properties. See Figure 3.4.Case 2a: Let e1; e2 2 �(S)2 and let S1 = (S;E1) and S2 = (V � S;E2) be spanningtrees such that E1 � E(S)2 and E2 � E(V � S)2. Then T 1 = (V;E1 [fe1g [E2) andT 2 = (V;E1 [fe2g [E2) are spanning trees with the necessary properties. See Figure 3.5.

3.5. The Spanning Tree in Hypergraph Polytope: STHGP(n) 47
V

E3

e3

E2

S-UU

e1

E1

V-S

T 1

V

E3

e3

E2

S-U
e2

U

E1

V-S

T 2Figure 3.4: Case 1 for proof of Lemma 3.5
V

E1

S

e1
E2

V-S

T 1

V

E1

S

e2

E2

V-S

T 2Figure 3.5: Case 2 for proof of Lemma 3.5

3.5. The Spanning Tree in Hypergraph Polytope: STHGP(n) 48Case 2b: Let e1; e2 2 E(V � S)2. The jV � Sj � 2 case is trivial since there is atmost one such edge. Otherwise jV � Sj � 3 and there is a cut U � (V � S) such thate1; e2 2 (U : V � S � U)2. Let S1 = (S;E1), S2 = (U;E2) and S3 = (V � S � U;E3)be spanning trees such that E1 � E(S)2, E2 � E(U)2 and E3 � E(V � S � U)2. Lete3 2 (S : U)2. Then T 1 = (V;E1[fe3g[E2[fe1g[E3) and T 2 = (V;E1[fe3g[E2[fe2g[E3)are spanning trees with the necessary properties. See Figure 3.6.
V

E

U
E2

3

e1

S

E1

e3

V-S-UT 1

V

E

U
E2

3

e2

S

E1

e3

V-S-UT 2Figure 3.6: Case 3 for proof of Lemma 3.5Case 2c: If jV �Sj � 1 then E(V �S)2 is empty and the theorem is proved. Otherwiselet v1 2 S and let v2; v3 2 V � S be distinct vertices. Let e1 = fv1; v2g, e2 = fv2; v3g ande3 = fv1; v3g. Let U � V � S by any cut such that e2 2 (U : V � S � U)2 and v2 2 U .Let S1 = (S;E1), S2 = (U;E2) and S3 = (V � S � U;E3) be spanning trees such thatE1 � E(S)2, E2 � E(U)2 and E3 � E(V �S�U)2. Then T 1 = (V;E1[E2[E3[fe3g[fe1g)and T 2 = (V;E1 [E2 [E3 [fe3g [fe2g) are spanning trees with the necessary properties.See Figure 3.7. 2

3.5. The Spanning Tree in Hypergraph Polytope: STHGP(n) 49
V

E

U
E2

3

S

E1

3

1

v1

v2

v3

e

e

V-S-UT 1

V

E

U
E2

3

S

E1
2

v1

v2

3v

e3

e

V-S-UT 2Figure 3.7: Case 4 for proof of Lemma 3.5Lemma 3.6 Let n � 3, (V;E) = Kn and let S � V such that jSj � 2. LetF = fx 2 STn : Xe2Emax(je \ Sj � 1; 0)xe = jSj � 1gand let c x = b be any linear equation satis�ed by every x 2 F . Then there exist � and �such that b = �(jSj � 1) + �(jV j � jSj)and ce = �max(je \ Sj � 1; 0) + �(jej � 1�max(je \ Sj � 1; 0))for all e 2 E.Proof : By Lemma 3.5, ce = � for every 2-edge e 2 E(S)2 and ce = � for every2-edge e 2 E(V)2 n E(S)2. Let x1 2 F so that c x1 = b, let T 1 = (V;E1) be the hy-pergraph corresponding to x1 and let e 2 E1 be any edge of this tree. Let k = jej andj = max(je \ Sj � 1; 0).

3.5. The Spanning Tree in Hypergraph Polytope: STHGP(n) 50Now e can be replaced with a spanning tree constructed of 2-edges from E(e)2, takingj of these 2-edges from E(e \ S)2 and the other k � 1� j 2-edges from E(e)2 nE(S)2. Theresult will be a spanning tree T 2 with incidence vector x2. We have x2 2 F by constructionso that c x2 = b. Edge e was replaced by j 2-edges of weight � and k�1� j edges of weight� and so by Lemma 3.1 we have ce = j�+ (k� 1� j)�. Substituting j and k back in givesce = �max(je \ Sj � 1; 0) + �(jej � 1�max(jej \ Sj � 1; 0)).If we reduce all edges to 2-edges in this fashion, we will have exactly jSj � 1 2-edges inE(S)2 and exactly jV j � jSj 2-edges in E(V)2 n E(S)2. We must therefore haveb = �(jSj � 1) + �(jV j � jSj): 2Theorem 3.8 Let n � 3, (V;E) = Kn and let S � V such that 2 � jSj < n. Then theinequality Xe2Emax(je \ Sj � 1; 0)xe � jSj � 1 (3.11)de�nes a facet of STHGP(n).Proof : First note that (3.11) is a valid inequality, since ifXe2Emax(je \ Sj � 1; 0)xe > jSj � 1we have a cycle residing entirely within S, a contradiction since every spanning tree x 2 STnis acyclic. Let F be the set of all x 2 STn that satisfy the linear equationXe2Emax(je \ Sj � 1; 0)xe = jSj � 1: (3.12)Let c x = b be any linear equation that is satis�ed by every x 2 F . By Lemma 3.6 weknow that equation c x = b can be written in the form: b = �(jSj � 1) + �(jV j � jSj) andce = �max(je \ Sj � 1; 0) + �(jej � 1�max(je \ Sj � 1; 0)) for all e 2 E. We can thereforeobtain this equation by taking � times equation (3.7) plus (���) times equation (3.12). The

3.5. The Spanning Tree in Hypergraph Polytope: STHGP(n) 51set F therefore has dimension m� 2 = dim(STHGP(n))� 1, proving that inequality (3.11)is facet-de�ning. 2Remark: All of the preceding proofs remain valid for any hypergraph H = (V;E)containing all 2-edges. In this case m = jEj and the resulting polytope has dimensionm� 1.3.5.5 Cutsets are Weaker than SubtoursThis section presents an alternate integer programming formulation based on cutset con-straints and shows that its LP relaxation is weaker than the formulation based on subtourelimination. It also shows that cutset constraints do not de�ne facets of STHGP(n) exceptin the special case of single-terminal cutsets | in which case they are equivalent to then� 1-terminal subtour constraints.Let n � 2 and hypergraph H = (V;E) = Kn. We assume for the sake of concretenessthat V = f0; 1; : : : ; n � 1g. If for example e = f1; 3; 5g we shall denote xe concisely asx135. We de�ne STP(n), the subtour polytope, to be those points satisfying (3.3), (3.4) and(3.5). We de�ne CSP(n), the cutset polytope, to be those points satis�ed by (3.3), (3.5)and Xe2(S:V�S)xi � 1 for all S � V such that jSj � 1: (3.13)Theorem 3.9 Let x 2 CSP(n) \ Zm and E0 = fe 2 E : xe = 1g. Then H 0 = (V;E0) is aspanning tree of H.Proof : Let e 2 E. We �rst show that xe � 1 is implied by the other constraints. Let�E = fe 2 E : xe � 2g. We can subtract (jej�1)(xe�1) from both sides of (3.3) for all e 2 �E.Comparing the right hand side with (3.8) to conclude that p � 2 and so there must be atleast 2 connected components in H 0. This implies that at least one of the constraints (3.13)is violated, a contradiction. So we infer that xe 2 f0; 1g and each edge e is either selected in

3.5. The Spanning Tree in Hypergraph Polytope: STHGP(n) 52E0 or not. The cutset constraints (3.13) imply that H 0 is connected. Equation (3.3) impliesthat H 0 is also acyclic, since it represents (3.8) with p = 1. Since H 0 is both connected andacyclic, it is a tree. 2For any S � V , de�ne h(S) = Pe2E max(je \ Sj � 1; 0)xe. We now show that everycutset constraint is a sum of two subtour constraints.Theorem 3.10 For all S � V such that 0 < jSj < jV j,x(S : V � S)� 1 = [jSj � 1� h(S)] + [jV � Sj � 1� h(V � S)] : (3.14)Proof : From (3.3) we havejV j � 1 = Xe2E(jej � 1)xe = h(S) + x(S : V � S) + h(V � S)=) x(S : V � S) = jSj+ jV � Sj � 1� h(S) � h(V � S)=) x(S : V � S) = [jSj � 1� h(S)] + [jV � Sj � 1� h(V � S)] : 2We are now ready to prove the main result | that the LP relaxation of the cutsetformulation is weaker than the LP relaxation of the subtour formulation.Theorem 3.11 For n � 4, STHGP(n) � STP(n) � CSP(n) (3.15)Proof : Every constraint of STP(n) is a facet of STHGP(n), implying thatSTHGP(n) � STP(n):Let n = 4, (V;E) = Kn, and consider that point �x 2 RjEj whose only non-zero componentsare �x012 = �x013 = �x023 = �x0123 = 13 :

3.5. The Spanning Tree in Hypergraph Polytope: STHGP(n) 53Then �x 2 STP(4) but �x 62 STHGP(4) since x012 + x013 + x023 + x123 + x0123 � 1 is a validinequality for STHGP(4) that is violated by �x. (This inequality actually de�nes a facet ofSTHGP(4).) By adding additional 2-edges of weight 1, we can embed this example for anyn � 4. Therefore STHGP(n) � STP(n) for n � 4.Suppose that ; � S � V such that x(S : V � S) < 1. Then the left hand side ofequation (3.14) is negative, implying at least one of h(S) > jSj�1 or h(V �S) > jV �Sj�1is true. Therefore, any violation of (3.13) implies at least one violation of (3.4). Thisimplies that STP(n) � CSP(n). Let n = 4 and consider the solution �y whose only non-zero components are �y01 = 1 and �y012 = �y13 = �y23 = 1=2. We have �y 2 CSP(4) but�y 62 STP(4) since subtour S = f0; 1g is violated by �y. This implies STP(4) � CSP(4). Byadding additional 2-edges of weight 1, we can embed this example for any n � 4. ThereforeSTP(n) � CSP(n) for n � 4. 2Finally, we show that the cutset constraints do not de�ne facets of STHGP(n), exceptin one special case.Theorem 3.12 Let n � 3, and S � V such that 0 < jSj < n. Then the cutset constraintXe2(S:V�S)xe � 1 (3.16)de�nes a facet of STHGP(n) if and only if jSj = 1 or jV � Sj = 1.Proof : From (3.14) we deduce thatx(S : V � S)� 1is non-negative if and only if[jSj � 1� h(S)] + [jV � Sj � 1� h(V � S)]is non-negative. If jSj = 1 then jSj � 1 � h(S) = 0 and (3.16) is equivalent to subtourV �S. Similarly, if jV �Sj = 1, then jV �Sj� 1�h(V �S) = 0 and (3.16) is equivalent to

3.6. Counting the Spanning Trees of Kn 54subtour S. In all other cases, however, constraint (3.16) is the sum of two inequalities thatde�ne distinct facets. Consider the hyperplanes HS and HV�S consisting of those pointsthat satisfy h(S) = jSj� 1 and h(V �S) = jV �Sj� 1, respectively. A convex combinationof HS and HV�S is equivalent to a rotation of HS about its intersection with HV�S . Thisintersection is a ridge of STHGP(n), not a facet | its dimensionality is too small by 1 tobe a facet. 2
3.6 Counting the Spanning Trees of KnWe now turn to the question of how many distinct labeled spanning trees there are inKn, the complete hypergraph on n vertices. This is equivalent to the number of extremepoints of STHGP(n). The results of this section are part of work done in collaborationwith W. D. Smith. A forthcoming paper by Smith and Warme will present these and otherenumeration results for hypertrees, including simple combinatorial proofs of Theorem 3.15and Corollary 3.15.1 based on a generalization of the Pr�ufer code [37, 44].For the analogous problem in conventional graphs the classical result is nn�2, and isusually attributed to Cayley in 1889 [8]. Cayley's own paper, however, references an earlierproof of this formula by Borchardt [6] in 1860. We now present the analogous result forspanning trees in the complete hypergraph (i.e., hypertrees).For n � 1, let hn be the number of rooted hypertrees spanning n labeled vertices. Arooted hypertree is a hypertree in which one particular vertex is identi�ed as being the root.The desired result for unrooted hypertrees is then hn=n. Considering rooted hypertreesbreaks up the symmetry of the problem and avoids various automorphisms that wouldotherwise result.Let �nk	 denote the Stirling numbers of the second kind (i.e., the number of ways ofpartitioning n items into k non-empty subsets). They can be de�ned by the following

3.6. Counting the Spanning Trees of Kn 55recurrence: (00) = 1(n0) = 0 for n � 1(nk) = 0 for n < k(nk) = k (n� 1k)+(n� 1k � 1) for 1 � k � nFor k > 0, let Bell(k) be the kth Bell number (Bell(k) is the number of ways of partitioningk items into non-empty subsets). The Bell numbers can be expressed in terms of the Stirlingnumbers: Bell(n) = nXk=1(nk):Recently, W. D. Smith [51] obtained the following recurrence and generating functionfor hn:Theorem 3.13 (W. D. Smith [51]) Let hn be the number of rooted hypertrees spanningn labeled vertices. Then h1 = 1, and for n > 1hn = nXk>0 Bell(k)k! Xaj>0Pkj=1 aj=n�1 n� 1a1; a2; : : : ; ak! kYj=1haj : (3.17)Proof : The base case is obvious, so assume n > 1. Select a unique root vertex (thereare n possible choices). Now delete the root vertex and every hyperedge incident to theroot. All that remains are the individual subhypertrees of the root node, containing a totalof n � 1 vertices. Each of these subhypertrees is itself a rooted hypertree, the root vertexbeing the one that was incident to a deleted hyperedge. Suppose there are k of these rootedsubhypertrees. The vector a1; a2; : : : ; ak indicates how many vertices are in each of the ksubhypertrees. We divide by k! since the particular ordering of the subhypertrees does not

3.6. Counting the Spanning Trees of Kn 56matter. For each such vector there are n� 1a1; a2; : : : ; ak!ways of partitioning the n� 1 vertices into k non-empty subsets of sizes a1; a2; : : : ; ak. Foreach subset j of aj vertices, there are haj distinct rooted subhypertrees. Each of the Bell(k)partitions of the k subhypertrees represents a distinct way of hooking the subhypertrees tothe root using hyperedges. Let S1; S2; : : : ; Sj be such a partition. Then the k subhypertreesare connected to the root using j hyperedges. The hyperedge for Si consists of the roottogether with the root vertices of each subhypertree in Si. 2Remark: Replacing Bell(k) with 1 in (3.17) gives a recurrence for conventional rootedtrees.Let f(z) be a series in powers of z. Then [zn] f(z) denotes the coe�cient of zn in theseries f(z). If � is any non-zero real number, then [zn=�] f(z) denotes � [zn] f(z). LetH(z) = Xn�1hn znn! (3.18)be the exponential generating function for hn.Theorem 3.14 (W. D. Smith [51])H(z) = z eeH(z)�1: (3.19)Proof : It just so happens thatXaj>0Pkj=1 aj=n�1 n� 1a1; a2; : : : ; ak! kYj=1haj = " zn�1(n� 1)!# H(z)k: (3.20)Therefore, if n > 1 we havehn = " zn�1(n� 1)!# nXk>0Bell(k)H(z)kk! (3.21)

3.6. Counting the Spanning Trees of Kn 57Note that 1 +Xk�1Bell(k)zkk! = eez�1 (3.22)is known (e.g., equation 24f, page 34 of [53]). Substituting into (3.21) yields:hnn! = [zn�1] (1 +Xk�1Bell(k)H(z)kk!) = [zn�1] eeH(z)�1 = [zn] z eeH(z)�1 (3.23)which happens to hold at n = 1 as well as for n > 1. ThereforeH(z) = Xn>0hn znn! = z eeH(z)�1: (3.24)2To obtain a closed form for hn, we employ the Lagrange inversion formula [59], a weakform of which (su�cient for our purposes) isLemma 3.7 (Lagrange inversion formula) Let �(u) be a formal power series in u, suchthat �(0) = 1. Then there is a unique formal power series u(z) (about z = 0) satisfyingu(z) = z �(u(z)): (3.25)This formal power series satis�es[zn] u(z) = 1n [un�1] f�(u)ng: (3.26)A proof can be found in [59].Theorem 3.15 (Warme) Let hn be the number of rooted hypertrees spanning n labeledvertices. Then for every n � 1 hn = n�1Xi=0 (n� 1i)ni: (3.27)

3.6. Counting the Spanning Trees of Kn 58Proof : Apply the Lagrange inversion formula (Lemma 3.7) to (3.19) with �(u) = eeu�1:hnn! = [zn] H(z)= 1n [un�1] �(u)n= 1n [un�1] en(eu�1)= 1n [un�1] Xi�0 ni (eu � 1)ii!= 1n [un�1] Xi�0 nii! iXj=0 ij!eju (�1)i�j= 1n [un�1] Xi�0 nii! iXj=0 ij!(�1)i�j Xk�0 jk ukk!= 1n [un�1] Xk�024Xi�0 nii! iXj=0 ij!(�1)i�j jkk!35 uk= 1nXi�0 nii! iXj=0 ij!(�1)i�j jn�1(n� 1)!= 1n!Xi�0 nii! iXj=0 ij!jn�1(�1)i�jIt is known that i! (ni) =Xj ij! jn (�1)i�j(See, for example equation (6.19) from [22]). Performing this substitution yieldshnn! = 1n! Xi�0(n� 1i) ni:Since �n�1i 	 = 0 for all i > n� 1, we can stop summing at i = n� 1 which yields:hn = n�1Xi=0 (n� 1i) ni: 2

3.6. Counting the Spanning Trees of Kn 59Corollary 3.15.1 (Warme) The number of distinct (unrooted) hypertrees spanning n la-beled vertices is n�1Xi=0 (n� 1i) ni�1:

4The Algorithm
This chapter presents a branch-and-cut algorithm for solving the MST in hypergraph prob-lem | and by reduction the FST concatenation problem. First the algorithm is presentedand its more important pieces are shown to be correct. A number of important implemen-tation details are highlighted. Finally, empirical results are presented from a computationalstudy containing a large number of problem instances, both randomly generated and fromwell known problem libraries. Each instance is solved as both a Euclidean and a rectilinearproblem. The results indicate that these methods yield by far the fastest exact Steiner treealgorithm in existence.4.1 Branch-and-Cut ProcedureThis section presents a branch-and-cut algorithm that solves integer program (3.6). Lowerbounds for the branch-and-cut are provided by the linear program relaxation of (3.6):min fc x : x 2 Pg (4.1)This lower bound has been extremely tight in practice. For most problems in the computa-tional study (Section 4.2 below), the optimal solution to (4.1) is integral.60

4.1. Branch-and-Cut Procedure 61Unfortunately, there are an exponential number of constraints (3.4), making it imprac-tical to solve (4.1) directly. Instead an iterative method is used that avoids dealing with somany constraints.Let C be any �nite collection of linear equations and inequalities. Let P be the polyhe-dron de�ned as those x satisfying every constraint in C. Let C0 be some small subset of C.For all i � 0 let Pi be the polyhedron de�ned as those x satisfying every constraint in Ci.The iteration begins with i = 0. At step i, let ~xi be an optimal solution to the followinglinear program: minfc x : x 2 Pig: (4.2)Let Vi � C be any non-empty subset of constraints that are violated by ~xi. If no such subsetVi exists, then the iteration terminates and ~xi is an optimal solution to linear programminfc x : x 2 Pg (4.3)If such a Vi exists, however, de�ne Ci+1 = Ci [Vi, increment i, and repeat.In a landmark result, Gr�otschel, Lov�asz and Schrijver [23, 24] showed that this processalways terminates, and that the number of iterations required is at most a polynomialfunction of the number of variables. In particular, the number of constraints is irrelevant| but must be �nite.Given an ~xi, we must either �nd a non-empty set Vi � C of constraints that are violatedby ~xi or show that every constraint in C is satis�ed. This sub-problem is known as theseparation problem for constraints C, since violated inequalities represent hyperplanes thatseparate ~xi from polytope P. The constraints are sometimes called cutting-planes, and theiterative process is often called constraint generation, or cutting-plane generation. This isthe cut portion of a branch-and-cut algorithm.If C contains an exponential (or even larger) number of constraints, it is not at all clearthat the separation problem can be solved in polynomial time. But if it can, then the entireiteration can be solved in polynomial time.

4.1. Branch-and-Cut Procedure 62For the particular case at hand, let P0 be the polyhedron de�ned by (3.3), (3.5), all(3.4) for which jSj = 2, plus the following constraints:x(ftg : V � ftg) � 1 for all t 2 V , (4.4)xe + xf � 1 for all (e; f) 2 Ĉ, (4.5)where Ĉ � E � E is an incompatibility relation, which may be empty. Constraints (4.4)are the 1-terminal cutset constraints. In Section 3.5.5 we showed these are equivalent tothe n � 1-terminal subtours. The cutset form normally yields constraint rows that aremuch more sparse than the equivalent subtour constraints. Constraints (4.5) introduce theoptional incompatibility information to improve the initial LP. We use all (4.5) that arenot dominated by 2-terminal subtours (i.e., the subtour constraint x1 + x2 + x3 + x4 � 1dominates the incompatibility constraint x2 + x4 � 1). We then solve (4.1) by iterations ofoptimization (i.e., LP solving) followed by separation of constraints (3.4).Figure 4.1 presents pseudo-code for the overall branch and cut algorithm. Each node� is a tuple containing three members: �z is the node's objective value; �x is the node'sLP solution vector; and �b is the set of all constraints that the node imposes due to branchvariables. Figure 4.2 presents pseudo-code for the process node subroutine. It iterates op-timization and separation until either the node is infeasible, cut o�, integral, or preempted.Node preemption is discussed in Section 4.1.3.5.4.1.1 Branch-and-Cut ExampleWe now consider an example of how the branch-and-cut algorithm might behave whensolving a rectilinear FST concatenation problem. Note that problem instances requiringseveral branch-and-cut nodes are invariably too large to serve usefully as detailed examples.The following computational example, therefore, is entirely hypothetical | we illustratecomputational behavior and results without specifying the precise input data that producethem.

4.1. Branch-and-Cut Procedure 63
branch and cut (F)f lp = initial LP (F); � = new node (); �b = ;node set = ;; UB = 1; preempt z = 1loop status = process node (lp, �, UB, preempt z)case status inINFEASIBLE, CUTOFF:destroy node (�)INTEGRAL:BEST = �x; UB = �zdestroy node (�)node set = f�0 2 node set : �0z < UBgFRACTIONAL:(e; z0; z1) = choose branching variable (�x)�0 = new node (); �0z = z0; �0b = �b [fxe = 0g�1 = new node (); �1z = z1; �1b = �b [fxe = 1gnode set = node set [f�0; �1gdestroy node (�)PREEMPTED:node set = node set [f�gendcaseif node set = ; then return (BEST)� = select next node (node set)node set = node set n f�gpreempt z = 1for every �0 2 node set dopreempt z = min (preempt z, �0z)endendloopg Figure 4.1: Algorithm 1 | branch and cut.

4.1. Branch-and-Cut Procedure 64process node (lp, �, UB, preempt z)f loop (status, �z, �x) = solve LP (lp [�b)if status = INFEASIBLE then return (INFEASIBLE)/* status = OPTIMAL */if �z � UB then return (CUTOFF)if integer feasible solution (�x) then return (INTEGRAL)if �z > preempt z then return (PREEMPTED)C = perform separations (�x)if C = ; then return (FRACTIONAL)add constraints (lp, C)endloopg Figure 4.2: Algorithm 2 | process node.
The algorithm is given the set F of FSTs, and it constructs the initial LP tableauxas described above. For this example the LP solver yields an optimal solution �x havingobjective value of Z = 1:2. The separation algorithm �nds a number of subtour constraintsthat �x violates. These constraints are added to the LP tableaux which is re-optimizedyielding a new optimal solution �x having objective value Z = 1:41. After 58 more sepa-rate/optimize iterations, the separation procedure declares that x = �x violates none of thesubtour constraints (3.4), and has objective value Z = 1:6.It may happen that xe 2 f0; 1g for all e 2 E, in which case x is the incidence vector ofthe Steiner minimal tree. Unfortunately in this example there are a number of xe that havefractional values. Although we do not yet have a Steiner minimal tree, we do have a lowerbound | no SMT for the given point set can be shorter than 1:6. One of the fractionalvariables is x14 = 1=2. We must have either x14 = 0 or x14 = 1 in any valid Steiner

4.1. Branch-and-Cut Procedure 65tree incidence vector, so we break the initial problem into two subproblems as shown inFigure 4.3. Node 0 represents the initial problem with objective value Z = 1:6. Node 1represents the subproblem obtained by appending the constraint x14 = 0 to those of node 0.Similarly, node 2 represents the subproblem obtained by appending the constraint x14 = 1to those of node 0. We say that node 0 branches into nodes 1 and 2, and variable x14 iscalled the branch variable.
Node 0

Z = 1.6

x14

Node 1

Z = 1.7

Node 2

Z = 1.63

10

Figure 4.3: Example branch-and-cut tree 1.Note that adding these constraints cannot cause the objective value Z to decrease | Zcan only stay the same or increase. Since we want the lower bound to be as high as possible,it pays to choose a fractional variable (x14 in this case) for which the objective increasessigni�cantly in both subproblems. In this case, the objective has risen to 1:7 and 1:63 fornodes 1 and 2, respectively. Node 0 is now retired, since nodes 1 and 2 now collectivelyrepresent node 0's problem.Node 2 is selected for processing (it has the lowest objective value). After 3 constraintgeneration cycles, the objective value for node 2 has risen to Z = 1:65. Although no subtourconstraints are violated, the solution x is again fractional and variable x9 = 1=2 is chosenas the branch variable. Node 2 therefore retires, being replaced by nodes 3 and 4 havingobjective values 1:8 and 1:75, respectively. Figure 4.4 illustrates the current state of thebranch-and-cut tree.

4.1. Branch-and-Cut Procedure 66
Node 0

Z = 1.6

Z = 1.65

x14

Node 1

Z = 1.7

Node 2

Node 3 Node 4

1x9

Z = 1.8

10

0

Z = 1.75Figure 4.4: Example branch-and-cut tree 2.Node 1 is now selected, and after 2 constraint generation cycles, its objective value hasrisen to Z = 1:73. The LP solution vector x, however, is fractional and x23 = 3=8 is chosenas the branch variable. Node 1 therefore retires, being replaced by nodes 5 and 6, havingobjective values 1:81 and 1:92, respectively. See Figure 4.5.Node 4 is now selected, and after 87 iterations of constraint generation, its objectivevalue has risen to Z = 1:9. The solution is fractional, however, and x23 is the chosen branchvariable. Node 4 retires and is replaced by nodes 7 and 8 having objective values 1:91 and1:92, respectively. See Figure 4.6.Node 3 is selected next, and after 5 iterations of constraint generation, a solution isobtained that is integral and has objective value 1:84. This is the incidence vector of a validSteiner tree (which may or may not be optimal). But we do know that nodes 6, 7 and 8 arenow suboptimal, so we can retire them. Such nodes are said to be cut o�. See Figure 4.7.Node 5 is now selected, since it is the only remaining node to process. Its objective valuerises to 1:82 after constraint generation, and fractional variable x12 is chosen for branching.Node 5 retires and is replaced by nodes 9 and 10, having objective values 1:87 and 1:83,

4.1. Branch-and-Cut Procedure 67
Node 0

Z = 1.6

Z = 1.65

x14

Node 1 Node 2

10

Z = 1.73

Node 3 Node 4

1x9

Z = 1.8

0

Node 6

x23
0 1

Node 5

Z = 1.81 Z = 1.92 Z = 1.75Figure 4.5: Example branch-and-cut tree 3.
Node 0

Z = 1.6

Z = 1.65

x14

Node 1 Node 2

10

Z = 1.73

Node 6

x23
0 1

Node 5

Z = 1.81 Z = 1.92

Node 3 Node 4

1x9

Z = 1.8

0

Z = 1.9

1

Z = 1.92

0
x23

Node 7 Node 8

Z = 1.91Figure 4.6: Example branch-and-cut tree 4.

4.1. Branch-and-Cut Procedure 68
Node 0

Z = 1.6

Z = 1.65

x14

Node 1 Node 2

10

Z = 1.73

Node 6

x23
0 1

Node 5

Z = 1.81 Z = 1.92

Node 3 Node 4

1x9
0

Z = 1.9

1

Z = 1.92

0
x23

Node 7 Node 8

Z = 1.91

Z = 1.84

Figure 4.7: Example branch-and-cut tree 5.
respectively. Node 9 is immediately cut o�, since its objective value already exceeds theupper bound of 1:84 established by node 3.Node 10 now remains, and its solution is integral with objective Z = 1:83. This causesnode 3 to be cut o�, leaving node 10 as the optimal solution to the integer program asshown in Figure 4.8.A number of design parameters must be speci�ed for any branch-and-cut algorithm.Some procedure must be speci�ed for selecting the next pending node to process. Separationprocedures must be provided for constraint classes large enough to require them. Finally,some method of choosing branch variables must be speci�ed. The most complex of thesecomponents are normally the separation procedures.

4.1. Branch-and-Cut Procedure 69

1

Z = 1.92

0
x23

Node 7 Node 8

Z = 1.91

Node 0

Z = 1.6

Z = 1.65

x14

Node 1 Node 2

10

Z = 1.73

Node 6

x23
0 1

Node 5

Z = 1.92

Node 3 Node 4

1x9
0

Z = 1.9

10

Node 9

x12

Node 10

Z = 1.87

Z = 1.84

Z = 1.83

Z = 1.82

Figure 4.8: Final example branch-and-cut tree.4.1.2 Separation of Subtour Elimination ConstraintsWe are given an LP solution x and we need to �nd an S � V with S 6= ; that violates (3.4),or show that no such S exists. This section presents a ow formulation that solves thisseparation problem in polynomial time. We de�ne the following functionf(S) = jSj �Xe2Emax(je \ Sj � 1; 0)xe: (4.6)Then separating constraints (3.4) is equivalent to �nding an S � V such that S 6= ; andf(S) < 1.We note that f(S) is submodular. A function f : 2V 7! R is submodular if and only iff(A) + f(B) � f(A [B) + f(A \B) for all A;B � V .

4.1. Branch-and-Cut Procedure 704.1.2.1 Deterministic Flow FormulationThe �rst polynomial time deterministic algorithm for separating inequalities (3.4) was to�nd a minimum of the submodular function (4.6) using the \ellipsoid" method of Gr�otschel,Lov�asz, and Schrijver [23, 24]. Although a major improvement over heuristics alone, thismethod was exceedingly slow on separation subproblems larger than about 80 terminals.Queyranne [45] noticed that minimizing f(S) can be reduced to an instance of the\selection problem," as de�ned by Rhys [47] and Balinski [1]. These are equivalent to�nding a \maximal closure of a graph," as de�ned by Picard [42]. These problems reduceto �nding a minimum cut on a simple bipartite directed graph.The ow network G = (N;A) for this separation problem is constructed as follows: Letthe set of distinct vertices be N = fsg[Y [Z[ftg and the set of arcs be A = A1[A2[A3,where Y = ffe : e 2 Eg;Z = fgj : j 2 V g;A1 = f(s; fe) : e 2 Eg;A2 = f(fe; gj) : e 2 E ^ j 2 eg;A3 = f(gj ; t) : j 2 V g:For all j 2 V , de�ne bj = x(�(fjg)) = Xe2E:j2exe:We call bj the \congestion level" of terminal j. Let arc (s; fe) 2 A1 have capacity xe, arc(gj ; t) 2 A3 have capacity bj�1, and let all arcs in A2 have in�nite capacity. See Figure 4.9for an illustration of this ow network.We de�ne an s � t cut of G to be a subset W � N such that s 2 W and t 62 W . Theweight c(W) of s� t cut W is the total capacity of all arcs (u; v) 2 A such that u 2W andv 62W .

4.1. Branch-and-Cut Procedure 71

ts

x1 x2

x3

x4

x5

x6

x7

b1 - 1

b2 - 1

b3 - 1

b4 - 1

b5 - 1

f1

f2

f3

f4

f5

f6

f7

g1

g2

g3

g4

g5

Figure 4.9: Flow network for subtour separation problem.Theorem 4.1 Let W � N be an s� t cut of G that minimizes c(W). LetSW = fj 2 V : gj =2Wg:Then SW is a minimum of f(S).Proof : Let W be such a minimum cut. We can write W = fsg [F [G, where F � Yand G � Z. We note as follows that F is completely determined by G. Let fe 2 Y . Suppose

4.1. Branch-and-Cut Procedure 72there is an arc (fe; gj) 2 A2 such that gj 62 W . Then we must have fe 62 W or else arc(fe; gj) of in�nite capacity would span the cut, contradicting c(W) being a minimum. Theremaining case is where gj 2 W for every gj such that (fe; gj) 2 A2. We claim in this casethat fe 2 W , since a search for an augmenting path from s to t would always label nodefe: if arc (s; fe) has zero ow, then node fe would be labeled directly from s; if arc (s; fe)has positive ow, then there is at least one arc (fe; gj) 2 A2 with ow that can be returnedto fe. Node fe would be labeled from such a gj since all of them are in W .Let wj = 1 if gj 2 W and wj = 0 otherwise. Then c(W) can be written in terms of thewj as c(W) = Xe2E 241�Yj2ewj35xe +Xj2V (bj � 1)wj= Xe2E�xeYj2ewj +Xj2V (bj � 1)wj +Xe2E xe (4.7)The last summation is a constant that does not depend on the wj .Now consider the function f(S). Let sj = 1 if j 2 S and sj = 0 otherwise. Let �sj = 1�sjbe the complementary 0� 1 variables. We write f(S) in terms of the �sj as follows:f(S) = jSj �Xe2Emax(je \ Sj � 1; 0)xe= Xj2V sj �Xe2E 240@Xj2e sj1A� 1 +Yj2e(1� sj)35 xe= Xj2V (1� �sj)�Xe2E 240@Xj2e(1� �sj)1A� 1 +Yj2e �sj35 xe= jV j �Xj2V �sj �Xe2E 24jej �Xj2e �sj � 1 +Yj2e �sj35 xe= jV j �Xj2V �sj �Xe2E(jej � 1)xe +Xe2E0@xeXj2e �sj1A�Xe2E0@xeYj2e �sj1A= jV j �Xj2V �sj �Xe2E(jej � 1)xe +Xj2V 0@�sj Xe:j2exe1A�Xe2E0@xeYj2e �sj1A

4.1. Branch-and-Cut Procedure 73= jV j �Xj2V �sj �Xe2E(jej � 1)xe +Xj2V bj�sj �Xe2E0@xeYj2e �sj1A= Xe2E0@�xeYj2e �sj1A+Xj2V (bj � 1)�sj �Xe2E(jej � 1)xe + jV j (4.8)The last two terms do not depend upon the �sj and are therefore constants that can beignored. If we set �sj = wj we see that the cut capacity (4.7) di�ers by a constant from thefunction (4.8) being minimized.Suppose on the other hand that S is a minimum of f(S). Then the corresponding W isseen to be a minimum of c(W) because (4.7) and (4.8) di�er by a constant, and because ofthe correspondence between S, G and F . 2Remark: Minimizing f(S) is equivalent to �nding the minimum of the following non-linearpolynomial over 0� 1 variablesXe2E0@�xeYj2e �sj1A+Xj2V (bj � 1)�sj (4.9)where all non-linear coe�cients are negative1. Note that if the linear term coe�cient of�sj isn't positive, then �sj = 1 in any optimal solution. This is a problem reduction criteriabj � 1 =) sj = 0 =) j 62 S that will be discussed further in Section 4.1.2.2.To satisfy the S 6= ; constraint, let t 2 V . De�ne a new function ft : (V � ftg) 7! Ras: ft(S) = f(S [ftg). Let S�t be a minimum of ft(S). Then S = S�t [ftg is a minimumof f(S) satisfying t 2 S. Repeating this for every t 2 V guarantees �nding the minimum off(S) subject to the side constraint that S 6= ;.Finding a minimum of ft(S) corresponds to forcing �st = 0 in equation (4.9). Whensetting up the ow network for this problem, simply eliminate vertex gt, vertices fe suchthat t 2 e and the associated arcs when setting up the ow network. When the minimum1Picard and Queyranne [43] showed that such problems are equivalent to the selection problem.

4.1. Branch-and-Cut Procedure 74of ft(S) is obtained, delete terminal t from the separation problem, choose another t anditerate. Our implementation chooses a t that minimizes bt on each iteration.The deterministic ow formulation can be costly. To speed up the separation process,a suite of problem reductions and heuristics are used.4.1.2.2 Reductions and DecompositionsFollowing Padberg and Wolsey [41], we can eliminate many terminals from considera-tion using the following idea, which is adapted from their proposition 2 (i). Recall fromSection 4.1.2.1 that for all t 2 V , we de�nebt = x(�(ftg)) = Xe2E:t2exe: (4.10)We call bt the \congestion level" of terminal t.Lemma 4.1 If bt � 1 and f(S [ftg) < 1 then f(S) � f(S [ftg) < 1.Proof : If t 2 S then there is nothing to prove, so assume t =2 S. LetA = fe 2 E : je \ Sj � 1 and t 2 egand B = fe 2 E : je \ Sj � 1 and t =2 eg:Then f(S [ftg)� f(S) = jS [ftgj �Xe2A je \ Sjxe �Xe2B(je \ Sj � 1)xe�jSj+Xe2A(je \ Sj � 1)xe +Xe2B(je \ Sj � 1)xe= jSj+ 1�Xe2A je \ Sjxe � jSj+Xe2A je \ Sjxe �Xe2Axe= 1�Xe2Axe � 1� bt � 0

4.1. Branch-and-Cut Procedure 752We say that a terminal t such that bt � 1 is uncongested, or is congestion-free. Byiteratively eliminating all uncongested terminals, we are left with a core set V̂ of congestedterminals. We need only consider the congested subhypergraph Ĥ = (V̂ ; Ê) (i.e., the subhy-pergraph induced by vertices V̂). Appendix A presents a simple stack-based algorithm forcomputing Ĥ in linear time.For every hypergraph H = (V;E) having edge weights xe for all e 2 E, we de�ne�H = (V; �E) such that �E = fe 2 E : xe > 0g. We call �H the support hypergraph of H.Lemma 4.2 Let H = (V;E) be a hypergraph with weights xe for all e 2 E to separate.Let �H = (V; �E) be the support hypergraph of H. Let the connected components of �H beH1 = (V1; E1); H2 = (V2; E2); : : : ; Hk = (Vk; Ek). Let S � V and Sj = S \ Vj for all1 � j � k. If f(S) < 1 then there is some j such that f(Sj) < 1.Proof : We assume that k � 2, since if k = 1 we have S1 = S and the theorem holds.Now assume to the contrary that f(Sj) � 1 for all 1 � j � k. Thenf(S) = jSj �Xe2Emax(je \ Sj � 1; 0)xe= kXj=124jSj j � Xe2Ej max(je \ Sjj � 1; 0)xe35= kXj=1 f(Sj) � k � 2;a contradiction. 2Thus we may further con�ne our search to within single connected components. This isjust a generalization of proposition 1 of [41] to hypergraphs.Lemma 4.3 Let H = (V;E) be a hypergraph with weights xe for all e 2 E to separate.Let �H = (V; �E) be the support hypergraph of H. Let A;B;C be a partition of V andEA; EB be a partition of �E such that jCj = 1, EA = fe 2 �E : e � (A [C)g and

4.1. Branch-and-Cut Procedure 76EB = fe 2 �E : e � (B [C)g. If S � V such that f(S) < 1 then f(S \ (A [C)) < 1or f(S \ (B [C)) < 1.Proof : Assume f(S \ (A [C)) � 1 and f(S \ (B [C)) � 1. Thenf(S) = jSj �Xe2Emax(je \ Sj � 1; 0)xe= jS \ (A [C)j+ jS \ (B [C)j � jS \ Cj� Xe2EAmax(je \ Sj � 1; 0)xe � Xe2EBmax(je \ S)� 1; 0)xe= f(S \ (A [C)) + f(S \ (B [C))� jS \ Cj� f(S \ (A [C)) + f(S \ (B [C))� 1 � 1a contradiction. 2One may therefore separately consider the subhypergraphs (A[C;EA) and (B[C;EB).By simple induction it may be shown that the search for violations may be con�ned to thebiconnected components of �H. Suppose t 2 C (i.e., t is an articulation point). Then tcan be congested initially, but uncongested within (A [C;EA) and/or (B [C;EB). If so,the reduction steps can be applied recursively. The subhypergraphs that remain after allreductions have been performed are called congested components. Without loss of generality,we will assume in the sequel that we are solving the separation problem on a single congestedcomponent Hj = (Vj ; Ej). Appendix A presents an algorithm that �nds the biconnectedcomponents of a hypergraph in linear time.These reductions are repeated every time the deterministic ow formulation deletes aterminal t. Deleting one or more terminals can produce opportunities for further reductionof the component.4.1.2.3 HeuristicsWe use two very quick heuristics that locate cycles that are integral as well as cycles thatare nearly integral (i.e., integral except for a single fractional edge). The �rst procedure

4.1. Branch-and-Cut Procedure 77uses depth-�rst traversal over all edges e 2 E for which xe = 1. Any terminal that is visitedmore than once implies a cycle that can be read o� the stack. During this walk, the integraledges traversed are recorded, yielding the \integrally connected components". Althoughenumerating all cycles in this way could take exponential time, this seldom happens inpractice due to the combined e�ects of constraints (3.3), (4.4) and fractional edges. Thisproblem is avoided by terminating the traversal after some limited number of cycles havebeen discovered. Nearly integral cycles are discovered by checking each fractional edge e 2 E(i.e., 0 < xe < 1) against each integrally connected component. Any fractional edge havingtwo or more terminals in common with a single integrally connected component representsa violated subtour that is \nearly integral."The reductions are then applied, yielding a set of congested components Hj = (Vj ; Ej).If a congested component is small (e.g. jVj j � 10), then it is reasonable to completelyenumerate all subsets of Vj. On larger components we enumerate small-cardinality subsets.The maximum cardinality checked is a decreasing function of jVj j.If no violations have yet been discovered within Hj = (Vj ; Ej), we apply a method thatheuristically reduces the hypergraph Hj to an undirected graph �Hj and then apply Padbergand Wolsey's method [41] directly. The reduction is as follows: let e 2 Ej . Let ke = jej � 1.Let �Te be any set of ke edges from f(s; t) 2 e� eg that forms a spanning tree for e. Assigneach of these edges weight xe. Taking the union of the �Te for all e 2 Ej we obtain a weightedmultigraph. By merging equivalent edges and summing their weights we obtain a weightedgraph to which we can apply the method [41]. This method is heuristic in that violationswill be detected or not based upon the particular choices of spanning tree for each full set.Lacking a better way to proceed, we arbitrarily choose minimum spanning trees.Finally, the deterministic ow formulation is applied to each congested component forwhich no violations have been found.

4.1. Branch-and-Cut Procedure 784.1.2.4 Constraint StrengtheningTo obtain stronger constraints we clean up every subtour violation S by performing all of thereduction steps of Section 4.1.2.2 (removal of uncongested terminals, connected components,biconnected components, etc.) on the subhypergraph induced by S. Occasionally this willsplit a single \maximally violated" subtour into 2 or more subtours that are lesser violationsbut stronger constraints. This is done only for constraints discovered by the deterministicow formulation | constraints discovered by the various heuristics seldom change duringthis process.4.1.3 Implementation DetailsThis section presents some implementation details of the branch-and-cut procedure.4.1.3.1 Constraint PoolConstraints for the problem are kept in a constraint pool. Conceptually, every LP problemis solved over all of the constraints in the pool. For e�ciency, however, the LP solver workswith only a subset of these constraints at one time. Whenever a new LP solution x isobtained, the pool is scanned for constraints that x violates. All such constraints are addedto the LP and the process iterates until all constraints in the pool are satis�ed. Nothing isdeleted from the LP tableaux until this happens. We count this as one LP in the empiricaldata | even though the LP solver may be invoked several times. There are two reasons forthis: What we really want to count is optimize/separate iterations. Also the LP tableauxitself could serve as the pool, although less e�ciently.When a suitable fraction of the constraints in the LP tableaux have become slack, theyare deleted from the LP but remain in the constraint pool for some time. Subsequent LPsolutions may cause such constraints to be reused if violated again. Keeping only bindingconstraints in the LP tableaux decreases total LP solution time (including pool overhead)by about ten fold on most medium to large problems.

4.1. Branch-and-Cut Procedure 79Constraints are deleted from the pool based on a measure of their e�ectiveness, whichis inversely proportional to the product of a constraint's size and the number of iterationsover which it has remained slack. The least e�ective constraints are deleted until su�cientspace has been reclaimed for newly generated constraints. New constraints are given severaliterations of grace time before they become elligible for deletion. The total size of the poolis maintained at a level that is proportional to the largest LP tableaux seen so far. Thislevel is only a target, and may be exceeded if necessary.A hash table permits duplicate constraints to be discovered quickly as new constraintsare added. Each constraint in the pool also has a reference count indicating the numberof inactive nodes for which the constraint is binding. Constraints with non-zero countsare never deleted. Without this protection, processing for the current node could undoprevious progress made on inactive nodes and termination of the algorithm would no longerbe guaranteed.4.1.3.2 Node ProcessingProcessing of a node j involves iterating the LP solver and the separation algorithms. Thisiteration terminates when any of the following conditions is achieved:1. The LP is infeasible.2. The LP objective meets or exceeds the upper bound.3. The LP objective exceeds that of some other node k.4. The separation algorithms �nd no violated constraints.In the �rst two cases the node is discarded. In the third case the node is set aside andprocessing is begun (or resumed) on node k instead. Section 4.1.3.5 below explains this inmore detail. In the �nal case the LP solution x is either integral or fractional. If x is integralwe record x as the best integer feasible solution seen so far, and discard node j. If x is

4.1. Branch-and-Cut Procedure 80fractional, we must choose a fractional variable xe to branch on and replace node j with thetwo new nodes that result from further restricting node j's problem with constraints xe = 0and xe = 1, respectively. Note that either (or both) of these new nodes might actually bediscarded immediately if they are already known to be infeasible or suboptimal.4.1.3.3 Selection of Branch VariablesWhen node processing terminates with a fractional solution, one of the variables xe havinga fractional value must be chosen for branching. The node is then replaced with two newnodes: one restricting xe = 0, the other restricting xe = 1. Since the number of nodes andnumber of fractional variables are typically both small, brute force is used to choose thebest fractional variable to branch on.Let e 2 E such that xe is fractional. Let Z0e and Z1e be the LP objectives obtained byadding the constraints xe = 0 and xe = 1 correspondingly, to the current problem. Thevariable xe that maximizes Ze = min(Z0e ; Z1e) is used as the branch variable.Let Zmax be the best Ze seen so far. If Z0e � Zmax then there is no need to computeZ1e . Similarly, if Z1e � Zmax then there is no need to compute Z0e . Since small changes in xetend to correlate well with small increases in the objective, some advantage can be gainedby computing Z0e �rst if 0 < xe � 1=2, and otherwise computing Z1e �rst.Suppose Z0e is infeasible or exceeds the curent upper bound. Then it is possible to �xxe = 1 in the current node and continue checking the remaining fractional variables. Insimilar fashion we can �x xe = 0 if Z1e is infeasible or exceeds the upper bound. If forsome fractional xe both Z0e and Z1e are either infeasible or exceed the upper bound, thenno further variables need be tested | the node can be discarded.It costs virtually nothing to check if any of these LP solutions is an integer feasiblesolution that improves upon the current upper bound. If so, the solution is recorded andthe upper bound updated.

4.1. Branch-and-Cut Procedure 814.1.3.4 Node SelectionWhen a new node must be selected for processing, the best node �rst strategy is used. Thatis, the pending node having the lowest objective value is chosen. Although this strategycan require an exponential amount of memory in the worst case, this has not happened inpractice due to the quality of the lower bound.We do not record an LP basis for each node, only two bit vectors indicating whichvariables are �xed, and if so the value to which they are �xed | 0 or 1. Saving an entireLP basis for each node consumes substantially more memory. The loss of speed caused bybeginning (or resuming) the processing of each node with a suboptimal basis appears to bea negligible percentage of the run time.4.1.3.5 Node PreemptionProblems requiring several nodes sometimes trigger a severe ine�ciency in naive branch-and-cut algorithms. Consider what happened to node 4 in the example problem of Section 4.1.1.A large number of expensive separate/optimize iterations (87 in this small example) wereexecuted on node 4, raising its objective from 1:75 to 1:9. Unfortunately, most of this e�ortwas for naught since node 4 was eventually cut o� by node 3 at an objective value of 1:84.In fact, all iterations beyond those needed to achieve a node 4 objective value of 1:83 (theoptimal solution) are wasted e�ort.This happens quite often unless steps are taken to prevent it. When constraint gen-eration for the current node j has increased its objective value Zj to the point where itis no longer the best node, then we preempt the processing of node j. That is, wheneversome other node k has Zk < Zj, we preempt processing of node j and begin (or resume)processing of node k. This keeps the computational e�ort focused on improving the globallower bound.After generating some good constraints it is not unusual to process several nodes inturn (each preempted by the next) before encountering a node that resumes constraint

4.2. Empirical Results 82generation. The e�ect is to re-solve the LP for each of these nodes using the recentlydiscovered constraints.4.2 Empirical ResultsA large number of problem instances were attempted (1501). Optimal Euclidean and rec-tilinear Steiner minimal trees were obtained for every instance. All computations reportedhere were performed on a 125 MHz Sparc 20 with 256 megabytes of memory. All CPU timesare reported in seconds. All LPs were solved using CPLEX version 4.0. All rectilinear FSTswere generated using the Salowe-Warme algorithm [49]. All Euclidean FSTs were generatedusing the Winter-Zachariasen algorithm [62].We solved problem sets from the literature, including those of Soukup and Chow [52],and all of the problems from Beasley's OR-library [3, 2] having 1000 or fewer terminals.Because the OR-library problems jump directly from 100 points to 250 we included 15random problem instances each of 110; 120; : : : ; 240 points to �ll in the gaps in our plots.We also included a more thorough study of random instances including both medium sizedproblems (50 instances each at 100; 200; 300; 400 and 500 terminals), and smaller problems(100 problems each of sizes 15; 20; 25; 30; 35; 40; 45 and 50 points. In all the study contains1501 problems ranging in size from 3 to 1000 terminals | all of which were solved to provenoptimality as both Euclidean and rectilinear instances. Solving all 3002 problems requiredalmost 63 CPU days of computation.Figures 4.10 through 4.13 plot various execution statistics for FST generation: Fig-ure 4.10 gives a scatter plot of Euclidean and rectilinear FST generation time versus numberof terminals. Figure 4.11 plots average EFST and RFST generation time versus number ofterminals, with minimum and maximum ranges shown. Note that the Winter-ZachariasenEFST generator is signi�cantly more costly than the Salowe-Warme RFST generator, atleast for problem sizes up to 1000 terminals. The plots suggest that these roles mightreverse beyond about 1500 terminals. Figure 4.12 gives a scatter plot of both EFST and

4.2. Empirical Results 83RFST generation times versus the number of FSTs generated. Figure 4.13 plots the numberof FSTs generated versus the number of terminals. For the uniformly distributed randomdata in this computational study, these appear to be essentially linear functions, with rec-tilinear averaging about 4n FSTs, and Euclidean averaging about 2:7n FSTs. For boththe Euclidean and rectilinear problems, point sets are known that give rise to much largernumbers of FSTs.Figures 4.14 through 4.19 plot various execution statistics for FST concatenation: Fig-ures 4.14 and 4.15 give scatter plots of the FST concatenation times versus number ofterminals for the Euclidean and rectilinear cases, respectively. Figures 4.16 and 4.17 scatterplot the same data, but instead as a function of the number of FSTs. Figure 4.18 over-lays both plots. There appears to be very little di�erence in the way that Euclidean andrectilinear concatenation times are distributed when viewed this way. This suggests thatthe sole explanation for EFST concatenation being easier might be that fewer FSTs arenormally obtained in Euclidean problems. Figure 4.19 plots the average EFST and RFSTconcatenation times as a function of the number of terminals.Figures 4.20 through 4.25 plot various execution statistics for total SMT computationtime: Figures 4.20 and 4.21 give scatter plots of total SMT computation time versus num-ber of terminals for the Euclidean and rectilinear cases, respectively. Figures 4.22 and 4.23scatter plot the same data, but instead as a function of the number of FSTs. Figure 4.24overlays both plots. Finally, Figure 4.25 plots average SMT computation time with min-imum and maximum ranges for both the Euclidean and rectilinear problems. AlthoughEuclidean SMTs are more expensive for small numbers of points, they appear to becomeless costly above about 900 terminals.See Appendix B for a tabulation of the speci�c computational details of each OR-libraryproblem instance solved.

4.2. Empirical Results 84

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 100 200 300 400 500 600 700 800 900 1000

C
P

U
 S

ec
on

ds

Terminals

EFST Gen Time
RFST Gen Time

Figure 4.10: Scatter plot of FST generation time vs. number of terminals.

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 100 200 300 400 500 600 700 800 900 1000

C
P

U
 S

ec
on

ds

Terminals

Mean EFST Gen Time
Mean RFST Gen Time

Figure 4.11: Plot of min/avg/max FST generation time vs. number of terminals.

4.2. Empirical Results 85

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
P

U
 S

ec
on

ds

Number of FSTs

EFST Gen Time
RFST Gen Time

Figure 4.12: Scatter plot of FST generation time vs. number of FSTs generated.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000

F
S

T
s

Terminals

Mean RFSTs
Mean EFSTsFigure 4.13: Plot of number of FSTs vs. number of terminals.

4.2. Empirical Results 86

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 100 200 300 400 500 600 700 800 900 1000

C
P

U
 S

ec
on

ds

Terminals

EFST Cat Time

Figure 4.14: Scatter plot of Euclidean FST concatenation time vs. number ofterminals.

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 100 200 300 400 500 600 700 800 900 1000

C
P

U
 S

ec
on

ds

Terminals

RFST Cat Time

Figure 4.15: Scatter plot of rectilinear FST concatenation time vs. number ofterminals.

4.2. Empirical Results 87

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
P

U
 S

ec
on

ds

Number of FSTs

EFST Cat Time

Figure 4.16: Scatter plot of Euclidean FST concatenation time vs. number ofFSTs.

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
P

U
 S

ec
on

ds

Number of FSTs

RFST Cat Time

Figure 4.17: Scatter plot of rectilinear FST concatenation time vs. number ofFSTs.

4.2. Empirical Results 88

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
P

U
 S

ec
on

ds

Number of FSTs

EFST Cat Time
RFST Cat Time

Figure 4.18: Scatter plot of EFST and RFST concatenation time vs. number ofFSTs.

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 100 200 300 400 500 600 700 800 900 1000

C
P

U
 S

ec
on

ds

Terminals

Mean RFST Cat Time
Mean EFST Cat Time

Figure 4.19: Plot of FST min/avg/max concatenation time vs. number ofterminals.

4.2. Empirical Results 89

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 100 200 300 400 500 600 700 800 900 1000

C
P

U
 S

ec
on

ds

Terminals

Total ESMT Time

Figure 4.20: Scatter plot of Euclidean SMT total CPU time vs. number ofterminals.

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 100 200 300 400 500 600 700 800 900 1000

C
P

U
 S

ec
on

ds

Terminals

Total RSMT Time

Figure 4.21: Scatter plot of rectilinear SMT total CPU time vs. number ofterminals.

4.2. Empirical Results 90

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
P

U
 S

ec
on

ds

Number of FSTs

Total ESMT Time

Figure 4.22: Scatter plot of Euclidean SMT total CPU time vs. number of FSTs.

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
P

U
 S

ec
on

ds

Number of FSTs

Total RSMT Time

Figure 4.23: Scatter plot of rectilinear SMT total CPU time vs. number of FSTs.

4.2. Empirical Results 91

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
P

U
 S

ec
on

ds

Number of FSTs

Total ESMT Time
Total RSMT Time

Figure 4.24: Scatter plot of ESMT and RSMT total CPU time vs. number ofFSTs.

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 100 200 300 400 500 600 700 800 900 1000

C
P

U
 S

ec
on

ds

Terminals

Mean Total ESMT Time
Mean Total RSMT Time

Figure 4.25: Plot of min/avg/max total CPU time vs. number of terminals.

4.2. Empirical Results 92Two problems required 19 branch-and-cut nodes, eight problems needed 9 to 15 nodes.All other problems required less than 8 branch-and-cut nodes. Over 92% of the problemsobtained the optimal solution at the root node, with no branching.The lower bound computed at the root node is extremely tight. Only 35 of the problemsexceeded a gap of 0.1% | of these 35 problems only three had 100 terminals or more. Theworst was a 25 terminal problem with a gap of 1.12257%. The gap was zero for almost 88%of the problems.The problems that consume the most CPU time for a given number of terminals generallyspend that time doing large numbers of constraint generation iterations that improve theobjective value only minutely | improvements of less than one part in 109 per iteration arecommon in such circumstances. In Section 5.2 we propose a method that should greatlyspeed solution when convergence becomes this slow.Warme, Winter and Zachariasen [58] present additional computational experience thatcombines the new FST concatenation algorithm presented here with state-of-the-art Eu-clidean [62] and rectilinear [64] FST generators. The computational study presented thereincludes instances from the TSPLIB problem set [46], as well as some pathological Euclideanand rectilinear instances. In that study, optimal Euclidean and rectilinear solutions wereobtained for instances as large as 2392 points (TSPLIB instance pr2392).Figure 4.26 presents the solution for a 1000 point problem (instance 1 from the OR-library estein1000.txt �le).Finally, to show that the method can handle even larger problems, we also solved asingle 2000 terminal Euclidean instance obtained by combining problems 1 and 2 from the1000 point OR-library problem set. See Figure 4.27 for a plot of the optimal solution.

4.2. Empirical Results 93

Figure 4.26: A rectilinear Steiner minimal tree for 1000 terminals. (Problem 1from OR-library estein1000.txt �le.)

4.2. Empirical Results 94

Figure 4.27: A Euclidean Steiner minimal tree for 2000 terminals. (Problems 1and 2 combined from OR-library estein1000.txt �le.)

5Future WorkThis chapter presents some ideas for future research that may improve upon the resultspresented here.5.1 New Facet ClassesOne of the best ways of improving a branch-and-cut method such as this is to identify majornew classes of facet-de�ning inequalities. There are a number of ways to achieve this.� Analyze numerous fractional solutions until a pattern is discovered.� Obtain all facets of the polytope for small n. Analyze those that are unrecognizeduntil a pattern is discovered.Signi�cant work has already been directed at the second method, resulting in completelists of all facets of STHGP(n) for 2 � n � 5. Enumeration of STn was done using a simplerecursive C program. All facet enumeration computations were done using Christof andLoebel's porta code, which uses Fourier-Motzkin elimination [14] to obtain the convex hullas a set of linear equations and inequalities. We assume for the sake of concreteness thatV = f0; 1; : : : ; n� 1g. Suppose edge e = f1; 3; 5g. For conciseness we write xe as x135.95

5.1. New Facet Classes 96There are a large number of facet-de�ning inequalities. To conserve space we partitionthem into equivalence classes. For each class we present only the member count and onerepresentative member inequality. Two inequalities are members of the same class if andonly if they are identical under some permutation of the vertices.STHGP(2) consists of the single point x01 = 1. There are no facets.STHGP(3) has 4 hyperedges, 4 extreme points, and 4 facets. The facet classes are:� (3) two-terminal subtours,� (1) x012 � 0.STHGP(4) has 11 hyperedges, 29 extreme points, and 22 facets. The facet classes are:� (6) two-terminal subtours,� (4) three-terminal subtours,� (6) x01 � 0,� (4) x012 � 0,� (1) x0123 � 0,� (1) x012 + x013 + x023 + x123 + x0123 � 1.The �rst two classes are subtours, the next three classes are non-negativity constraints, andthe �nal class is a single clique constraint.STHGP(5) has 26 hyperedges and 311 extreme points and 172 facets. The facet classesare:� (10) two-terminal subtours,� (10) three-terminal subtours,� (5) four-terminal subtours,

5.1. New Facet Classes 97� (10) x01 � 0,� (10) x012 � 0,� (5) x0123 � 0,� (1) x01234 � 0,� (30) x01 + x04 + x14 + x012 + x013 + 2x014 + x023 + x024 + x034 + x123+2x124 + 2x134 + x234 + 2x0123 + 3x0124 + 3x0134 + 2x0234 + 2x1234+3x01234 � 3,� (20) x01 + x04 + x14 + x012 + 2x013 + 2x014 + x023 + x024 + 2x034 + x123+x124 + 2x134 + x234 + 2x0123 + 3x0124 + 3x0134 + 2x0234 + 2x1234+3x01234 � 3,� (10) x01 + x02 + x03 + x04 + x12 + x13 + x14 � x0234 + x1234,� (5) x01 + x02 + x03 + x04 � x1234,� (5) x012 + x013 + x023 + x123 + x0123 + x0124 + x0134 + x0234 + x1234 + x01234 � 1,� (10) x012 + x013 + x014 + x0123 + x0124 + x0134 + x0234 + x1234 + x01234 � 1,� (1) x012 + x013 + x014 + x023 + x024 + x034 + x123 + x124 + x134 + x234+2x0123 + 2x0124 + 2x0134 + 2x0234 + 2x1234 + 2x01234 � 2,� (30) x01 + x012 + x013 + 2x014 + x024 + x034 + x124 + x134+2x0123 + 2x0124 + 2x0134 + x0234 + x1234 + 2x01234 � 2,� (10) x01 + x012 + x013 + x014 + x023 + x024 + x034 + x123 + x124 + x134+x234 + 2x0123 + 2x0124 + 2x0134 + x0234 + x1234 + 2x01234 � 2.The n = 6 case poses an enormous computational e�ort, which is underway. As of thiswriting, 415 classes representing 311738 facets have been identi�ed.In Table 5.1 we summarize the basic properties of STHGP(n) for small n.

5.2. Early Branching 98n m Extreme Points Facets2 1 1 03 4 4 44 11 29 225 26 311 1726 57 4447 � 3117387 120 797458 247 17226819 502 4357882010 1013 1264185051Table 5.1: Properties of STHGP(n).5.2 Early BranchingProblems that take excessive time to solve do not usually need an extraordinary numberof branch-and-bound nodes. Normally it is the constraint generation process that takes solong to converge. When this happens it is possible to terminate constraint generation forthe node and branch instead. This usually achieves a dramatic decrease in total solutiontime. The danger, however, is that the number of nodes can explode if branching is beguntoo soon. Good heuristics are needed for monitoring the convergence rate and decidingwhen to branch.During periods of slow convergence it is also possible to begin testing the branchingbehaviour of each of the variables. One variable per iteration could be tested, in some most-promising-�rst heuristic order until a good variable is found or the convergence becomesextremely slow.This is an obvious candidate for parallel execution. While one processor is optimizingthe main LP, several others can be optimizing various slightly di�erent subproblems. In eachcase the LP tableaux is identical | only the variable bounds are changed. Synchronizationwould be needed only once per iteration when the variable branching results would be

5.3. Steiner Problem in Graphs 99gathered from the other processors, and newly generated constraints distributed to theother processors.5.3 Steiner Problem in GraphsA number of researchers have expressed interest in the problem of generating FSTs for theSteiner problem in graphs. It is not yet known whether this great advance in the geometricproblems will transfer to the graph problem. There is also interest in the Steiner problemin directed graphs, since this problem is of considerable importance to the design of largecommunication networks.5.4 New FormulationsFor the Steiner problem in graphs it is known that a tighter formulation is obtained byusing directed edges and identifying a unique terminal as the root vertex, although thisdoubles the number of problem variables. It is likely that a directed formulation of MSTin hypergraph would also be tighter, although in the FST concatenation application thiswould more than triple the number of solution variables on average.

6Conclusions
The method of computing Steiner minimal trees via FST generation and concatenationis currently the most e�cient approach in practice. The FST generation processes forboth the Euclidean and rectilinear metric were reviewed in substantial detail. The FSTconcatenation phase, however, has been the major bottleneck with this approach.A new algorithm for FST concatenation was presented that signi�cantly reduces thisbottleneck. The new algorithm reduces FST concatenation to the problem of �nding aminimum weight spanning tree in a hypergraph | which was shown to be strongly NP-complete. The MST in hypergraph problem was formulated as an integer program andthe polyhedral theory of this problem was developed su�ciently to prove that all of theconstraints in this integer programming formulation are facet-de�ning. The integer programis solved using a new branch-and-cut algorithm whose signi�cant details were presented.Empirical results show that on both rectilinear and Euclidean Steiner minimal treeproblems the new FST concatenation algorithm vastly out-performs all other algorithmsin existence. Its nearest rectlinear competitors seem to be Martin and Koch [34] (up to40 terminals), and F�o�meier and Kaufmann [16] (70 terminals, but at least one instanceof 100 terminals). For the Euclidean problem, Winter and Zachariasen [62] is the closestcompetitor at 150 terminals. 100

101Provided a suitable FST generator is available, this method is applicable to other dis-tance metrics and arbitrary dimensions | even the Steiner problem in graphs. In light ofits great success on the rectilinear and Euclidean problems, it will be interesting to see howwell the method works on the graph problem.Despite the advance achieved in the computation of Steiner trees, it is likely that theMST in hypergraph results presented here will be the more important and lasting contri-bution. This is due to the inherent generality of hypergraphs and hypertrees as comparedto Steiner trees.

AReduction Algorithms
This appendix presents two algorithms used by the problem reductions of Section 4.1.2.2.Both algorithms operate on a hypergraph H = (V;E), and assume that for every t 2 V ,the set Et = fe 2 E : t 2 eg has been precomputed. Note that this is easily done inO(jV j+ jEj+ k) time, where k =Pe2E jej.Given a hypergraph H = (V;E) with edge weights xe for all e 2 E, Algorithm A.1computes the congested subhypergraph Ĥ = (V̂ ; Ê). See Figure A.1. The �rst loop requiresO(jEj) time, and the second requires O(jV j + k) time. The �nal loop runs at most jV jtimes since each terminal is pushed onto the stack once at most. The loop for every e 2 Eruns at most k times. The variable ke is one less than the number of undeleted verticesin e, and ke decrements to zero when only one vertex of e remains. This happens at mostonce per edge. When this happens, edge e is removed by the statement DE = DE [feg,which runs at most jEj times. The innermost loop runs at most k times total: it decreasesthe congestion level of the sole remaining undeleted vertex v 2 e. Therefore this algorithmruns in O(jV j + jEj + k) time and space. Correctness follows from two facts: that t 2 Vis deleted at most once (and only after bt � 1); and that edges are only deleted when theyhave one vertex left. 102

103DV = DE = ;; S = emptystack/* DV = vertices to discard, DE = edges to discard. */for every e 2 E doif xe > 0 thenke = jej � 1else ke = 0endifendfor every t 2 V dobt =Pe2Et xeif bt � 1 thenpush t onto stack S; DV = DV [ftgendifendwhile stack S is not empty dopop t from stack S; bt = 0for every e 2 Et doif ke > 0 thenke = ke � 1if ke � 0 thenDE = DE [fegfor every v 2 e such that bv > 0 do /* only one such v. */bv = bv � xeif bv � 1 and v =2 DV thenpush v onto stack S; DV = DV [fvgendifendendifendifendendV̂ = V nDV ; Ê = fe \ V̂ : e 2 E nDE and je \ V̂ j � 2g; Ĥ = (V̂ ; Ê)Figure A.1: Algorithm A.1 | compute congested subgraph.
Cockayne and Hewgill [10] propose to solve a problem equivalent to �nding the bicon-nected components of a hypergraph by constructing a conventional graph G containing edge(i; j) if there is some hyperedge containing both vertices i and j. Finding the biconnectedcomponents of G then yields the biconnected components of the original hypergraph in adirect way.

104Algorithm A.2 in Figures A.2 and A.3 is a slight modi�cation of the standard bicon-nected components algorithm for conventional graphs. The modi�cation permits it tooperate directly on a hypergraph, however, which is superior in that it does not requirethe construction of a separate graph data structure. Algorithm A.2 is easily shown to runin O(jV j + jEj + k) time and space. Its correctness is shown using the same argument asfor the standard algorithm for conventional graphs, by simply considering chains instead ofpaths.bcc(V,E)for every t 2 V doDFSt = 0; BACKt = 0endS = emptystack; DE = ;; j = 0/* DE = edges traversed */for every t 2 V doif DFSt � 0 thentraverse (t)endifendend bccFigure A.2: Algorithm A.2 | biconnected components of hypergraph.

105
traverse (v)j = j + 1; DFSv = j; BACKv = jfor every e 2 Ev doif e 62 DE thenpush e onto stack S; DE = DE [fegendiffor every w 2 e doif DFSw � 0 thentraverse (w)if BACKw � DFSv thenBE = ;; BV = ;repeatpop e2 from stack S; BE = BE [fe2g; BV = BV [e2until e2 = eoutput component (BV;BE)else if BACKw < BACKv thenBACKv = BACKwendifelse if BACKw < BACKv thenBACKv = BACKwendifendendend traverse Figure A.3: Subroutine traverse of Algorithm A.2.

BTabulated OR-Library Results
This appendix presents a complete tabulation of the computational details for each OR-library problem instance solved.In tables B.1 through B.9, N is the number of terminals (and problem instance),M is thenumber of FSTs. Z is the length of the optimal RSMT. The \Z Root" column is the �nal LPobjective value of the root node. The \% Gap" column is: 100(Z�Z Root)=Z. \Nds" is thenumber of branch-and-bound nodes required | 1 node indicates that optimality was provenat the root node (without branching). \LPs" is the total number of optimize/separateiterations that were required. The \IRow" column is the initial number of constraints. The\RTight" column is the number of binding constraints in the �nal LP tableaux for the rootnode.

106

107
N M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total5 (1) 8 1.6643993 1.664399 0.00000 1 1 12 9 0.14 0.03 0.176 (2) 11 1.5004998 1.500500 0.00000 1 1 17 9 0.44 0.02 0.467 (3) 6 2.0776711 2.077671 0.00000 1 1 8 8 0.53 0.02 0.558 (4) 7 2.1387890 2.138789 0.00000 1 1 9 9 0.47 0.02 0.496 (5) 10 2.0440525 2.044052 0.00000 1 1 14 11 0.39 0.02 0.4112 (6) 20 2.1842047 2.184205 0.00000 1 5 27 26 2.36 0.06 2.4212 (7) 23 2.2052928 2.205293 0.00000 1 1 29 15 1.96 0.02 1.9812 (8) 19 2.1777945 2.177795 0.00000 1 2 27 25 2.18 0.05 2.237 (9) 30 1.5594229 1.559423 0.00000 1 1 29 8 0.90 0.03 0.936 (10) 24 1.5987517 1.598752 0.00000 1 1 22 10 0.54 0.03 0.576 (11) 7 1.2741137 1.274114 0.00000 1 1 11 9 0.11 0.02 0.139 (12) 14 1.6483376 1.648338 0.00000 1 1 19 12 1.63 0.02 1.659 (13) 12 1.2733761 1.273376 0.00000 1 1 15 14 0.80 0.03 0.8312 (14) 16 2.2049159 2.204916 0.00000 1 1 19 13 0.58 0.02 0.6014 (15) 15 1.2304077 1.230408 0.00000 1 1 18 17 0.54 0.02 0.563 (16) 2 1.1667809 1.166781 0.00000 1 1 4 4 0.04 0.02 0.0610 (17) 9 1.6427922 1.642792 0.00000 1 1 11 11 0.54 0.02 0.5662 (18) 237 3.8176188 3.817619 0.00000 1 5 242 147 498.95 0.42 499.3714 (19) 37 1.7064572 1.706457 0.00000 1 4 41 35 3.54 0.09 3.633 (20) 3 1.0396152 1.039615 0.00000 1 1 6 4 0.06 0.02 0.085 (21) 17 1.8181793 1.818179 0.00000 1 1 16 6 0.24 0.02 0.264 (22) 4 0.5032862 0.503286 0.00000 1 1 7 5 0.10 0.02 0.124 (23) 5 0.5130289 0.513029 0.00000 1 1 8 5 0.10 0.01 0.114 (24) 5 0.2528201 0.252820 0.00000 1 1 8 5 0.07 0.02 0.093 (25) 3 0.1989685 0.198968 0.00000 1 1 6 4 0.07 0.01 0.083 (26) 3 0.1243470 0.124347 0.00000 1 1 6 4 0.08 0.01 0.094 (27) 4 1.1781697 1.178170 0.00000 1 1 7 6 0.08 0.02 0.104 (28) 5 0.2044153 0.204415 0.00000 1 1 8 5 0.06 0.02 0.083 (29) 3 1.4659774 1.465977 0.00000 1 1 6 4 0.05 0.02 0.0712 (30) 140 1.0198307 1.018917 0.08958 1 1 79 14 41.03 0.15 41.1814 (31) 21 2.3321736 2.332174 0.00000 1 1 28 21 0.85 0.03 0.8819 (32) 84 2.8142361 2.814236 0.00000 1 3 87 50 13.67 0.11 13.7818 (33) 39 2.2258049 2.225805 0.00000 1 3 49 33 10.84 0.07 10.9119 (34) 38 2.1381261 2.138126 0.00000 1 2 46 37 10.97 0.08 11.0518 (35) 39 1.3554457 1.355446 0.00000 1 1 51 35 8.34 0.05 8.394 (36) 6 0.8789125 0.878912 0.00000 1 1 10 7 0.06 0.01 0.078 (37) 11 0.7660261 0.766026 0.00000 1 2 14 12 0.68 0.04 0.7214 (38) 18 1.4248159 1.424816 0.00000 1 1 21 17 0.79 0.03 0.8214 (39) 13 1.4312456 1.431246 0.00000 1 1 15 15 0.67 0.02 0.6910 (40) 29 1.4179883 1.417988 0.00000 1 3 34 37 3.03 0.08 3.1120 (41) 28 1.9767196 1.976720 0.00000 1 1 37 34 3.78 0.05 3.8315 (42) 35 1.3152909 1.315291 0.00000 1 1 47 26 0.49 0.05 0.5416 (43) 62 2.3307646 2.330765 0.00000 1 3 65 44 13.41 0.09 13.5017 (44) 25 2.1869241 2.186924 0.00000 1 2 29 63 5.52 0.08 5.6019 (45) 48 1.9309954 1.930995 0.00000 1 3 56 66 12.57 0.16 12.7316 (46) 165 1.3660254 1.366025 0.00000 1 1 127 17 48.90 0.10 49.00Table B.1: Euclidean results for Soukup and Chow problems.

108N M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total5 (1) 8 1.87 1.870000 0.00000 1 1 19 8 0.06 0.02 0.086 (2) 10 1.64 1.640000 0.00000 1 1 18 7 0.06 0.02 0.087 (3) 9 2.36 2.360000 0.00000 1 1 15 8 0.07 0.02 0.098 (4) 12 2.54 2.540000 0.00000 1 1 21 13 0.06 0.03 0.096 (5) 10 2.26 2.260000 0.00000 1 1 18 7 0.06 0.02 0.0812 (6) 22 2.42 2.420000 0.00000 1 2 35 15 0.09 0.04 0.1312 (7) 22 2.48 2.480000 0.00000 1 1 35 13 0.10 0.03 0.1312 (8) 21 2.36 2.360000 0.00000 1 3 35 17 0.09 0.04 0.137 (9) 24 1.64 1.640000 0.00000 1 1 84 8 0.09 0.02 0.116 (10) 16 1.77 1.770000 0.00000 1 1 45 10 0.07 0.03 0.106 (11) 8 1.44 1.440000 0.00000 1 1 16 9 0.06 0.02 0.089 (12) 19 1.80 1.800000 0.00000 1 1 42 10 0.07 0.03 0.109 (13) 14 1.50 1.500000 0.00000 1 1 28 10 0.08 0.03 0.1112 (14) 12 2.60 2.600000 0.00000 1 1 13 13 0.07 0.02 0.0914 (15) 22 1.48 1.480000 0.00000 1 2 40 31 0.10 0.06 0.163 (16) 2 1.60 1.600000 0.00000 1 1 4 4 0.05 0.01 0.0610 (17) 11 2.00 2.000000 0.00000 1 1 15 13 0.07 0.02 0.0962 (18) 126 4.04 4.040000 0.00000 1 4 223 149 1.31 0.24 1.5514 (19) 35 1.88 1.880000 0.00000 1 2 120 43 0.12 0.07 0.193 (20) 4 1.12 1.120000 0.00000 1 1 10 4 0.06 0.01 0.075 (21) 11 1.92 1.920000 0.00000 1 1 26 6 0.08 0.02 0.104 (22) 5 .63 0.630000 0.00000 1 1 10 5 0.06 0.02 0.084 (23) 5 .65 0.650000 0.00000 1 1 10 5 0.05 0.01 0.064 (24) 6 .30 0.300000 0.00000 1 1 14 5 0.06 0.02 0.083 (25) 4 .23 0.230000 0.00000 1 1 10 4 0.05 0.01 0.063 (26) 3 .15 0.150000 0.00000 1 1 7 4 0.05 0.02 0.074 (27) 4 1.33 1.330000 0.00000 1 1 8 6 0.05 0.02 0.074 (28) 6 .24 0.240000 0.00000 1 1 12 5 0.06 0.02 0.083 (29) 4 2.00 2.000000 0.00000 1 1 10 4 0.05 0.01 0.0612 (30) 52 1.10 1.100000 0.00000 1 4 219 25 0.14 0.07 0.2114 (31) 25 2.59 2.590000 0.00000 1 1 49 15 0.10 0.02 0.1219 (32) 64 3.13 3.130000 0.00000 1 2 215 78 0.26 0.09 0.3518 (33) 51 2.68 2.680000 0.00000 1 3 141 37 0.17 0.09 0.2619 (34) 75 2.41 2.410000 0.00000 1 2 241 39 0.42 0.08 0.5018 (35) 72 1.51 1.510000 0.00000 1 2 244 61 0.38 0.09 0.474 (36) 3 .90 0.900000 0.00000 1 1 5 5 0.05 0.01 0.068 (37) 9 .90 0.900000 0.00000 1 1 15 13 0.07 0.02 0.0914 (38) 14 1.66 1.660000 0.00000 1 1 18 18 0.08 0.03 0.1114 (39) 14 1.66 1.660000 0.00000 1 1 18 18 0.07 0.03 0.1010 (40) 18 1.55 1.550000 0.00000 1 2 37 22 0.09 0.05 0.1420 (41) 30 2.24 2.240000 0.00000 1 2 51 37 0.11 0.06 0.1715 (42) 39 1.53 1.530000 0.00000 1 1 215 31 0.15 0.05 0.2016 (43) 68 2.55 2.550000 0.00000 1 3 302 41 0.30 0.11 0.4117 (44) 31 2.52 2.520000 0.00000 1 2 57 58 0.14 0.07 0.2119 (45) 80 2.20 2.200000 0.00000 1 4 380 59 0.32 0.33 0.6516 (46) 24 1.50 1.500000 0.00000 1 1 17 17 0.08 0.03 0.11Table B.2: Rectilinear results for Soukup and Chow problems.

109N M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total10 (1) 23 2.0206738 2.020674 0.00000 1 1 26 16 0.81 0.03 0.8410 (2) 12 1.6068682 1.606868 0.00000 1 1 16 15 0.34 0.03 0.3710 (3) 20 2.2280743 2.228074 0.00000 1 2 27 17 0.55 0.05 0.6010 (4) 14 1.7985963 1.798596 0.00000 1 2 19 17 0.76 0.04 0.8010 (5) 13 1.6944333 1.694433 0.00000 1 1 18 17 0.40 0.03 0.4310 (6) 23 2.3096026 2.309603 0.00000 1 1 29 17 3.22 0.04 3.2610 (7) 23 2.2338586 2.233859 0.00000 1 2 29 19 0.80 0.04 0.8410 (8) 15 2.1776829 2.177683 0.00000 1 2 21 19 2.37 0.04 2.4110 (9) 34 1.9684782 1.968478 0.00000 1 9 34 26 1.42 0.11 1.5310 (10) 17 2.0593317 2.059332 0.00000 1 1 23 18 0.74 0.04 0.7810 (11) 32 1.9473221 1.947322 0.00000 1 2 33 22 0.96 0.05 1.0110 (12) 12 1.7531237 1.753124 0.00000 1 1 16 14 0.36 0.02 0.3810 (13) 17 1.7138867 1.713887 0.00000 1 1 24 17 0.35 0.03 0.3810 (14) 27 1.9496522 1.949652 0.00000 1 4 34 26 1.16 0.07 1.2310 (15) 26 1.6716456 1.671646 0.00000 1 1 29 20 1.09 0.05 1.1420 (1) 51 3.0716427 3.071643 0.00000 1 2 57 38 13.88 0.07 13.9520 (2) 40 2.8546314 2.854631 0.00000 1 2 49 46 4.90 0.08 4.9820 (3) 53 2.4530918 2.453092 0.00000 1 2 54 54 9.37 0.08 9.4520 (4) 46 2.4661165 2.466117 0.00000 1 4 56 46 12.18 0.10 12.2820 (5) 51 2.9535470 2.953547 0.00000 1 5 55 51 12.41 0.11 12.5220 (6) 33 3.1315695 3.131570 0.00000 1 2 41 40 3.50 0.07 3.5720 (7) 39 3.0593002 3.059300 0.00000 1 2 47 41 9.14 0.07 9.2120 (8) 51 3.3169861 3.316986 0.00000 1 4 58 43 10.58 0.09 10.6720 (9) 31 3.1336342 3.133634 0.00000 1 2 40 37 2.20 0.06 2.2620 (10) 55 3.0118726 3.011873 0.00000 1 4 67 80 6.24 0.15 6.3920 (11) 59 2.3180526 2.318053 0.00000 1 3 64 47 4.72 0.08 4.8020 (12) 47 2.6537453 2.653745 0.00000 1 2 58 44 11.31 0.09 11.4020 (13) 38 3.0228482 3.022848 0.00000 1 2 49 41 2.40 0.08 2.4820 (14) 39 2.9330086 2.933009 0.00000 1 1 49 37 7.43 0.06 7.4920 (15) 34 2.7914795 2.791479 0.00000 1 2 42 34 4.73 0.07 4.80EuclideanN M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total10 (1) 27 2.2920745 2.292075 0.00000 1 4 67 22 0.10 0.06 0.1610 (2) 17 1.9134104 1.913410 0.00000 1 1 33 17 0.08 0.03 0.1110 (3) 16 2.6003678 2.600368 0.00000 1 2 32 20 0.08 0.05 0.1310 (4) 19 2.0461116 2.046112 0.00000 1 2 42 30 0.08 0.06 0.1410 (5) 13 1.8818916 1.881892 0.00000 1 1 22 13 0.07 0.03 0.1010 (6) 38 2.6540768 2.654077 0.00000 1 1 149 19 0.20 0.04 0.2410 (7) 25 2.6025072 2.602507 0.00000 1 2 63 23 0.10 0.06 0.1610 (8) 24 2.5056214 2.505621 0.00000 1 2 65 24 0.09 0.06 0.1510 (9) 22 2.2062355 2.206236 0.00000 1 2 54 23 0.09 0.06 0.1510 (10) 15 2.3936095 2.393610 0.00000 1 1 28 18 0.07 0.03 0.1010 (11) 31 2.2239535 2.223953 0.00000 1 3 102 23 0.13 0.06 0.1910 (12) 15 1.9626318 1.962632 0.00000 1 1 26 14 0.06 0.02 0.0810 (13) 22 1.9483914 1.948391 0.00000 1 1 61 17 0.08 0.04 0.1210 (14) 30 2.1856128 2.185613 0.00000 1 2 88 26 0.12 0.07 0.1910 (15) 21 1.8641924 1.864192 0.00000 1 2 54 21 0.10 0.06 0.1620 (1) 64 3.3703886 3.370389 0.00000 1 1 212 33 0.31 0.07 0.3820 (2) 58 3.2639486 3.263949 0.00000 1 2 162 61 0.25 0.12 0.3720 (3) 45 2.7847417 2.784742 0.00000 1 2 123 57 0.15 0.09 0.2420 (4) 88 2.7624394 2.750218 0.44241 1 2 469 93 0.65 0.29 0.9420 (5) 81 3.4033163 3.392034 0.33152 1 14 368 63 0.45 0.40 0.8520 (6) 55 3.6014241 3.601424 0.00000 1 2 169 42 0.19 0.08 0.2720 (7) 68 3.4934874 3.493487 0.00000 1 2 209 106 0.49 0.15 0.6420 (8) 63 3.8016346 3.788557 0.34401 1 5 178 50 0.24 0.15 0.3920 (9) 35 3.6739939 3.673994 0.00000 1 2 63 43 0.11 0.08 0.1920 (10) 56 3.4024740 3.402474 0.00000 1 4 179 88 0.22 0.21 0.4320 (11) 50 2.7123908 2.712391 0.00000 1 2 129 40 0.20 0.08 0.2820 (12) 89 3.0451397 3.045140 0.00000 1 2 415 48 0.52 0.13 0.6520 (13) 50 3.4438673 3.443867 0.00000 1 2 139 47 0.16 0.08 0.2420 (14) 55 3.4062374 3.406237 0.00000 1 2 150 43 0.19 0.09 0.2820 (15) 55 3.2303746 3.230375 0.00000 1 2 150 48 0.19 0.09 0.28RectilinearTable B.3: Results for OR-library problems 10{20 points.

110N M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total30 (1) 65 3.5787601 3.578760 0.00000 1 5 75 106 21.66 0.18 21.8430 (2) 62 3.5766544 3.576654 0.00000 1 8 73 92 26.33 0.21 26.5430 (3) 62 3.6568972 3.656897 0.00000 1 10 72 104 26.29 0.24 26.5330 (4) 79 3.7114129 3.711413 0.00000 1 8 90 69 27.84 0.16 28.0030 (5) 73 3.6138448 3.613845 0.00000 1 4 80 67 27.42 0.13 27.5530 (6) 80 3.4974427 3.497443 0.00000 1 3 83 66 48.18 0.12 48.3030 (7) 67 3.8136810 3.813681 0.00000 1 4 78 97 17.80 0.18 17.9830 (8) 76 3.6858000 3.685800 0.00000 1 9 87 88 30.10 0.29 30.3930 (9) 63 3.1809772 3.180977 0.00000 1 4 77 67 12.62 0.12 12.7430 (10) 53 3.7189924 3.718992 0.00000 1 2 64 71 10.48 0.09 10.5730 (11) 57 3.5901878 3.590188 0.00000 1 3 64 87 14.08 0.11 14.1930 (12) 76 3.4239470 3.423947 0.00000 1 3 88 66 20.99 0.12 21.1130 (13) 48 3.2224452 3.222445 0.00000 1 3 63 67 9.79 0.10 9.8930 (14) 87 3.8532497 3.853250 0.00000 1 2 92 87 36.25 0.15 36.4030 (15) 87 3.7718083 3.771808 0.00000 1 8 96 84 41.04 0.32 41.3640 (1) 113 3.9283544 3.928354 0.00000 1 7 124 99 47.67 0.24 47.9140 (2) 89 4.0668744 4.066874 0.00000 1 9 107 103 36.69 0.43 37.1240 (3) 88 4.3845457 4.384546 0.00000 1 4 100 90 51.78 0.17 51.9540 (4) 74 3.8531666 3.853167 0.00000 1 4 91 79 13.56 0.14 13.7040 (5) 97 4.5432520 4.543252 0.00000 1 5 107 101 50.30 0.18 50.4840 (6) 87 4.4151983 4.415198 0.00000 1 4 98 88 35.34 0.14 35.4840 (7) 81 4.0319228 4.031923 0.00000 1 3 93 109 31.25 0.16 31.4140 (8) 103 4.2734870 4.273487 0.00000 1 2 112 87 60.37 0.14 60.5140 (9) 139 4.6224129 4.622413 0.00000 1 5 155 126 91.18 0.27 91.4540 (10) 119 5.0832060 5.083206 0.00000 1 5 130 100 103.35 0.23 103.5840 (11) 85 4.1399269 4.139927 0.00000 1 8 104 107 39.39 0.24 39.6340 (12) 96 3.9078624 3.907862 0.00000 1 31 110 127 48.79 0.55 49.3440 (13) 102 4.5604964 4.560496 0.00000 1 3 113 139 49.04 0.26 49.3040 (14) 122 4.3578080 4.357808 0.00000 1 2 131 184 44.70 0.27 44.9740 (15) 137 4.5075847 4.507585 0.00000 1 6 139 101 94.93 0.28 95.21EuclideanN M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total30 (1) 106 4.0692993 4.069299 0.00000 1 3 402 80 0.53 0.20 0.7330 (2) 112 4.0900061 4.089173 0.02037 1 21 470 85 0.66 1.25 1.9130 (3) 98 4.3120444 4.312044 0.00000 1 3 363 75 0.68 0.18 0.8630 (4) 94 4.2150958 4.215096 0.00000 1 7 350 93 0.46 0.23 0.6930 (5) 76 4.1739748 4.173975 0.00000 1 4 213 95 0.37 0.22 0.5930 (6) 128 3.9955139 3.995514 0.00000 1 4 615 93 0.76 0.26 1.0230 (7) 94 4.3761391 4.376139 0.00000 1 3 442 96 0.60 0.18 0.7830 (8) 100 4.1691217 4.169122 0.00000 1 4 441 122 0.83 0.29 1.1230 (9) 70 3.7133658 3.713366 0.00000 1 3 174 132 0.24 0.20 0.4430 (10) 68 4.2686610 4.268661 0.00000 1 2 171 95 0.32 0.12 0.4430 (11) 107 4.1647993 4.164799 0.00000 1 5 502 127 0.79 0.39 1.1830 (12) 79 3.8416720 3.841672 0.00000 1 2 224 87 0.32 0.13 0.4530 (13) 92 3.7406646 3.740665 0.00000 1 6 337 74 0.41 0.24 0.6530 (14) 140 4.2897025 4.289702 0.00000 1 2 703 251 1.36 0.54 1.9030 (15) 128 4.3035576 4.303558 0.00000 1 12 864 83 0.75 0.77 1.5240 (1) 122 4.4841522 4.484152 0.00000 1 3 384 120 0.75 0.22 0.9740 (2) 128 4.6811310 4.681131 0.00000 1 6 510 118 0.76 0.35 1.1140 (3) 117 4.9974157 4.997416 0.00000 1 3 354 139 0.80 0.25 1.0540 (4) 90 4.5289864 4.528986 0.00000 1 3 220 113 0.47 0.20 0.6740 (5) 160 5.1940413 5.181185 0.24752 4 26 860 109 1.51 2.51 4.0240 (6) 123 4.9753385 4.975339 0.00000 1 3 467 143 0.70 0.32 1.0240 (7) 126 4.5639009 4.563901 0.00000 1 5 494 112 0.76 0.28 1.0440 (8) 122 4.8745996 4.874600 0.00000 1 7 412 100 0.83 0.36 1.1940 (9) 166 5.1761789 5.176179 0.00000 1 4 716 201 1.70 0.81 2.5140 (10) 163 5.7136852 5.713685 0.00000 1 4 850 114 1.33 0.30 1.6340 (11) 126 4.6734214 4.673421 0.00000 1 11 358 242 0.69 0.67 1.3640 (12) 115 4.3843378 4.384338 0.00000 1 9 383 106 0.69 0.54 1.2340 (13) 125 5.1884545 5.188454 0.00000 1 3 424 113 0.68 0.26 0.9440 (14) 141 4.9166952 4.916695 0.00000 1 2 456 237 0.87 0.38 1.2540 (15) 158 5.0828067 5.082807 0.00000 1 3 635 185 1.01 0.41 1.42RectilinearTable B.4: Results for OR-library problems 30{40 points.

111N M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total50 (1) 104 4.8366014 4.836601 0.00000 1 3 122 105 32.66 0.19 32.8550 (2) 154 4.9484046 4.948405 0.00000 1 5 168 138 83.40 0.36 83.7650 (3) 113 4.7471702 4.747170 0.00000 1 5 134 145 49.47 0.28 49.7550 (4) 115 4.4690747 4.469075 0.00000 1 3 131 123 31.49 0.23 31.7250 (5) 121 4.8648257 4.864826 0.00000 1 14 138 133 59.74 0.37 60.1150 (6) 112 4.9234586 4.923459 0.00000 1 5 125 120 115.26 0.34 115.6050 (7) 126 4.3613187 4.361319 0.00000 1 21 145 167 64.76 0.57 65.3350 (8) 116 4.7027470 4.702747 0.00000 1 3 136 105 50.45 0.22 50.6750 (9) 142 4.6760739 4.676074 0.00000 1 11 154 162 107.40 0.46 107.8650 (10) 126 4.6277910 4.627791 0.00000 1 3 141 133 92.54 0.33 92.8750 (11) 119 4.6693857 4.669386 0.00000 1 5 139 116 67.03 0.25 67.2850 (12) 126 4.6732215 4.673222 0.00000 1 7 140 127 75.53 0.45 75.9850 (13) 112 4.6564710 4.656471 0.00000 1 3 128 99 37.98 0.18 38.1650 (14) 109 4.7098685 4.709869 0.00000 1 2 127 106 61.15 0.15 61.3050 (15) 128 4.6079909 4.607991 0.00000 1 15 139 137 59.23 0.46 59.6960 (1) 143 4.7740453 4.774045 0.00000 1 19 163 191 91.46 1.11 92.5760 (2) 140 4.8129870 4.812987 0.00000 1 5 159 176 110.97 0.68 111.6560 (3) 148 4.9458783 4.945878 0.00000 1 9 161 163 100.00 0.44 100.4460 (4) 131 4.8461805 4.846181 0.00000 1 11 151 168 106.14 0.36 106.5060 (5) 127 4.8355513 4.835551 0.00000 1 15 153 177 77.98 0.54 78.5260 (6) 147 5.2504575 5.250458 0.00000 1 9 163 252 131.36 0.64 132.0060 (7) 173 5.2142524 5.214252 0.00000 1 9 195 152 196.85 0.42 197.2760 (8) 111 5.1173207 5.117321 0.00000 1 4 132 141 65.34 0.21 65.5560 (9) 161 4.9086808 4.908681 0.00000 1 12 172 161 109.27 0.55 109.8260 (10) 151 5.0587019 5.058702 0.00000 1 4 170 130 89.49 0.30 89.7960 (11) 130 4.9327588 4.932759 0.00000 1 3 155 127 53.68 0.21 53.8960 (12) 180 5.2924352 5.292435 0.00000 1 4 191 229 150.42 0.43 150.8560 (13) 151 5.2663823 5.266382 0.00000 1 27 163 183 91.91 3.15 95.0660 (14) 176 5.0235502 5.023550 0.00000 1 15 190 161 130.06 1.15 131.2160 (15) 136 4.9670958 4.967096 0.00000 1 3 156 156 67.68 0.26 67.94EuclideanN M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total50 (1) 172 5.4948660 5.494866 0.00000 1 10 728 164 1.69 0.99 2.6850 (2) 186 5.5484245 5.548425 0.00000 1 16 797 151 1.48 0.89 2.3750 (3) 190 5.4691035 5.469104 0.00000 1 4 926 165 1.75 0.86 2.6150 (4) 141 5.1535766 5.153577 0.00000 1 7 403 147 0.93 0.35 1.2850 (5) 158 5.5186015 5.518601 0.00000 1 9 591 136 1.33 0.46 1.7950 (6) 183 5.5804287 5.580429 0.00000 1 16 874 154 1.54 1.59 3.1350 (7) 190 4.9961178 4.996118 0.00000 1 19 832 139 1.72 1.47 3.1950 (8) 121 5.3754708 5.375471 0.00000 1 4 338 123 0.86 0.30 1.1650 (9) 167 5.3456773 5.343995 0.03146 1 6 689 304 1.28 1.23 2.5150 (10) 181 5.4037963 5.403796 0.00000 1 10 828 151 1.39 0.89 2.2850 (11) 155 5.2532923 5.253292 0.00000 1 6 482 143 0.99 0.42 1.4150 (12) 146 5.3409291 5.325255 0.29347 5 15 503 157 1.10 0.77 1.8750 (13) 129 5.3891019 5.389102 0.00000 1 4 449 132 0.85 0.30 1.1550 (14) 160 5.3551419 5.355142 0.00000 1 3 718 185 1.19 0.63 1.8250 (15) 171 5.2180862 5.218086 0.00000 1 6 623 130 1.19 0.44 1.6360 (1) 219 5.3761423 5.376142 0.00000 1 23 900 176 2.25 2.10 4.3560 (2) 282 5.5367804 5.530190 0.11902 2 18 1690 174 6.04 1.59 7.6360 (3) 206 5.6566797 5.656680 0.00000 1 5 821 248 1.96 0.82 2.7860 (4) 234 5.5371042 5.537104 0.00000 1 19 1306 217 2.22 2.67 4.8960 (5) 195 5.4704991 5.462873 0.13941 1 7 650 178 1.81 0.68 2.4960 (6) 201 6.0421961 6.042196 0.00000 1 14 779 194 1.88 1.03 2.9160 (7) 259 5.8978041 5.897804 0.00000 1 7 1411 215 3.04 0.88 3.9260 (8) 233 5.8138178 5.813818 0.00000 1 9 1210 225 2.51 0.96 3.4760 (9) 210 5.5877112 5.587711 0.00000 1 4 824 217 1.79 1.07 2.8660 (10) 208 5.7624488 5.762449 0.00000 1 8 881 182 2.03 0.85 2.8860 (11) 169 5.6141666 5.614167 0.00000 1 3 522 156 1.66 0.30 1.9660 (12) 243 5.9791362 5.979136 0.00000 1 13 1152 163 2.40 0.89 3.2960 (13) 214 6.1213533 6.121353 0.00000 1 12 841 197 2.12 1.52 3.6460 (14) 215 5.6035528 5.603553 0.00000 1 3 880 148 1.95 0.53 2.4860 (15) 179 5.6622581 5.662258 0.00000 1 4 510 175 1.55 0.33 1.88RectilinearTable B.5: Results for OR-library problems 50{60 points.

112N M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total70 (1) 158 5.4303745 5.430375 0.00000 1 5 184 178 99.67 0.34 100.0170 (2) 176 5.3275902 5.327590 0.00000 1 11 194 219 125.75 0.76 126.5170 (3) 197 5.3911607 5.391161 0.00000 1 5 212 158 231.29 0.50 231.7970 (4) 164 5.4989330 5.498933 0.00000 1 5 185 193 155.13 0.84 155.9770 (5) 165 5.4766967 5.476697 0.00000 1 11 187 166 134.25 0.50 134.7570 (6) 187 5.5335963 5.533596 0.00000 1 4 217 278 157.10 0.50 157.6070 (7) 209 5.5028315 5.502831 0.00000 1 12 224 221 215.82 1.26 217.0870 (8) 174 5.4806493 5.480649 0.00000 1 17 196 203 195.90 1.34 197.2470 (9) 154 5.4721643 5.472164 0.00000 1 7 173 204 116.34 0.46 116.8070 (10) 155 5.5203690 5.520369 0.00000 1 5 180 170 161.96 0.37 162.3370 (11) 161 5.7173389 5.717339 0.00000 1 14 190 198 126.10 0.77 126.8770 (12) 149 5.5228303 5.522830 0.00000 1 8 173 207 104.58 0.45 105.0370 (13) 151 5.4444504 5.444450 0.00000 1 7 176 238 116.42 0.46 116.8870 (14) 151 5.3521113 5.352111 0.00000 1 5 169 152 81.15 0.27 81.4270 (15) 197 5.5198241 5.519824 0.00000 1 4 219 198 218.90 0.44 219.3480 (1) 224 6.2574180 6.257418 0.00000 1 21 248 239 246.09 2.17 248.2680 (2) 189 5.6953971 5.695397 0.00000 1 21 220 222 148.93 1.02 149.9580 (3) 214 5.8724801 5.872201 0.00476 1 6 243 206 250.08 1.23 251.3180 (4) 208 5.6241641 5.624164 0.00000 1 6 233 209 185.26 0.97 186.2380 (5) 163 5.7545116 5.754512 0.00000 1 3 190 208 90.21 0.52 90.7380 (6) 163 6.1632528 6.163253 0.00000 1 3 190 165 108.56 0.32 108.8880 (7) 209 6.0308500 6.030850 0.00000 1 8 231 228 227.23 0.71 227.9480 (8) 219 5.9528555 5.952855 0.00000 1 10 239 206 316.42 1.04 317.4680 (9) 242 6.1076729 6.107673 0.00000 1 18 263 264 339.62 1.35 340.9780 (10) 186 5.7147350 5.714735 0.00000 1 5 213 213 179.76 0.50 180.2680 (11) 220 5.7648361 5.764836 0.00000 1 16 243 214 207.76 1.32 209.0880 (12) 171 5.6731388 5.673139 0.00000 1 13 201 192 149.09 0.51 149.6080 (13) 184 5.9683681 5.968368 0.00000 1 57 204 242 166.99 3.73 170.7280 (14) 217 6.1178198 6.117820 0.00000 1 6 235 188 338.83 0.53 339.3680 (15) 183 6.1433837 6.143384 0.00000 1 10 208 259 179.01 0.73 179.74EuclideanN M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total70 (1) 257 6.2058863 6.205886 0.00000 1 3 1047 208 3.02 0.61 3.6370 (2) 213 6.0928488 6.092849 0.00000 1 12 673 262 2.58 1.44 4.0270 (3) 256 6.1934664 6.193466 0.00000 1 13 1190 198 2.48 1.45 3.9370 (4) 215 6.2938583 6.293858 0.00000 1 16 705 312 2.60 1.69 4.2970 (5) 251 6.2256993 6.225699 0.00000 1 30 1024 219 2.88 2.97 5.8570 (6) 284 6.2124528 6.212453 0.00000 1 8 1504 263 3.60 1.00 4.6070 (7) 265 6.2223666 6.222367 0.00000 1 5 1263 189 3.21 0.76 3.9770 (8) 263 6.1872849 6.187285 0.00000 1 39 1124 223 3.32 4.84 8.1670 (9) 237 6.2986133 6.297066 0.02457 1 4 900 319 2.82 0.90 3.7270 (10) 214 6.2511830 6.249459 0.02757 1 7 711 203 2.25 0.61 2.8670 (11) 277 6.6455760 6.643072 0.03768 1 14 1140 262 3.83 1.72 5.5570 (12) 232 6.3047132 6.304713 0.00000 1 17 945 259 2.36 1.35 3.7170 (13) 212 6.2912258 6.291226 0.00000 1 5 822 177 2.31 0.57 2.8870 (14) 219 6.0411124 6.041112 0.00000 1 3 751 202 2.48 0.43 2.9170 (15) 303 6.2318458 6.231846 0.00000 1 3 1420 182 4.11 0.66 4.7780 (1) 278 7.0927442 7.092744 0.00000 1 12 1130 222 4.03 1.57 5.6080 (2) 272 6.5273810 6.527381 0.00000 1 6 952 242 3.91 0.85 4.7680 (3) 286 6.5332546 6.533255 0.00000 1 14 1266 394 3.66 2.67 6.3380 (4) 305 6.4193446 6.419345 0.00000 1 15 1337 247 3.65 1.48 5.1380 (5) 260 6.6350529 6.634241 0.01224 1 7 980 231 3.42 1.05 4.4780 (6) 247 7.1007444 7.100744 0.00000 1 5 817 255 3.51 0.72 4.2380 (7) 335 6.8228475 6.822847 0.00000 1 3 1717 237 4.90 0.93 5.8380 (8) 324 6.7452377 6.745238 0.00000 1 6 1529 197 7.23 1.04 8.2780 (9) 328 6.9825651 6.977550 0.07183 1 21 1712 242 4.25 2.28 6.5380 (10) 242 6.5497988 6.549799 0.00000 1 9 841 272 3.47 1.48 4.9580 (11) 269 6.6283099 6.628310 0.00000 1 10 1073 277 3.66 1.51 5.1780 (12) 242 6.5070089 6.507009 0.00000 1 46 940 251 3.43 4.80 8.2380 (13) 315 6.8022647 6.802265 0.00000 1 23 1500 220 5.24 2.75 7.9980 (14) 293 7.0077902 7.007790 0.00000 1 8 1300 223 4.67 1.18 5.8580 (15) 280 6.9939071 6.984967 0.12783 2 7 1244 364 4.16 2.02 6.18RectilinearTable B.6: Results for OR-library problems 70{80 points.

113N M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total90 (1) 215 6.0561870 6.056187 0.00000 1 5 238 232 229.27 0.56 229.8390 (2) 218 6.2213509 6.221351 0.00000 1 50 255 250 231.13 1.95 233.0890 (3) 233 6.4605693 6.460569 0.00000 1 7 259 272 291.68 1.30 292.9890 (4) 241 6.2576814 6.257681 0.00000 1 7 263 254 261.48 0.75 262.2390 (5) 223 6.3891591 6.389159 0.00000 1 5 250 200 204.19 0.51 204.7090 (6) 208 6.0465321 6.046532 0.00000 1 9 247 216 223.02 0.62 223.6490 (7) 203 6.2494171 6.249417 0.00000 1 7 231 274 218.59 0.68 219.2790 (8) 225 6.3064565 6.306456 0.00000 1 9 248 237 283.29 0.61 283.9090 (9) 207 5.9415312 5.941531 0.00000 1 20 241 288 183.17 1.65 184.8290 (10) 221 6.3200640 6.320064 0.00000 1 7 245 259 266.79 1.24 268.0390 (11) 224 6.2808067 6.280807 0.00000 1 67 249 257 317.91 3.91 321.8290 (12) 231 6.0821854 6.082185 0.00000 1 8 257 430 205.88 1.53 207.4190 (13) 217 6.3056722 6.305672 0.00000 1 19 241 280 239.27 2.03 241.3090 (14) 204 6.0941398 6.094140 0.00000 1 17 233 269 191.60 0.95 192.5590 (15) 223 6.2496530 6.249653 0.00000 1 21 252 227 291.25 1.70 292.95100 (1) 273 6.3942560 6.394256 0.00000 1 43 303 302 443.33 2.47 445.80100 (2) 274 6.5948121 6.594812 0.00000 1 21 301 326 564.79 1.55 566.34100 (3) 257 6.5313471 6.531347 0.00000 1 96 289 333 450.29 10.76 461.05100 (4) 262 6.5769774 6.576977 0.00000 1 6 297 280 417.27 0.74 418.01100 (5) 242 6.6746878 6.674688 0.00000 1 3 265 212 351.03 0.47 351.50100 (6) 259 6.4663684 6.466368 0.00000 1 26 291 308 483.24 1.90 485.14100 (7) 281 6.9878635 6.987863 0.00000 1 27 310 453 721.15 2.69 723.84100 (8) 242 6.3949711 6.394971 0.00000 1 12 271 288 363.95 0.99 364.94100 (9) 270 6.9143211 6.914321 0.00000 1 34 297 330 425.46 2.52 427.98100 (10) 251 6.7195108 6.719511 0.00000 1 15 281 301 386.24 1.94 388.18100 (11) 253 6.8329509 6.832951 0.00000 1 10 279 266 316.65 1.37 318.02100 (12) 234 6.6706226 6.670623 0.00000 1 4 260 231 227.46 0.50 227.96100 (13) 237 6.5052527 6.505253 0.00000 1 16 275 262 268.11 0.90 269.01100 (14) 262 6.8825985 6.882599 0.00000 1 54 291 327 372.09 4.81 376.90100 (15) 262 6.2051489 6.205149 0.00000 1 8 290 250 506.10 1.04 507.14EuclideanN M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total90 (1) 277 6.8350357 6.835036 0.00000 1 4 1017 238 4.59 0.73 5.3290 (2) 279 7.1294845 7.129485 0.00000 1 28 923 284 5.16 3.19 8.3590 (3) 375 7.4817473 7.481114 0.00847 1 28 1778 309 7.06 4.65 11.7190 (4) 304 7.0910063 7.091006 0.00000 1 10 1125 303 5.07 1.56 6.6390 (5) 290 7.1831224 7.183122 0.00000 1 4 931 288 5.12 1.03 6.1590 (6) 324 6.8640346 6.864035 0.00000 1 5 1222 374 5.80 2.16 7.9690 (7) 280 7.2036885 7.201542 0.02980 1 9 886 278 5.14 1.18 6.3290 (8) 325 7.2341668 7.234167 0.00000 1 21 1402 386 5.82 2.38 8.2090 (9) 323 6.7856007 6.782613 0.04402 3 17 1314 303 5.50 3.32 8.8290 (10) 345 7.2310409 7.231041 0.00000 1 10 1476 349 5.85 2.15 8.0090 (11) 387 7.2310039 7.227386 0.05003 2 93 2438 303 6.39 18.32 24.7190 (12) 318 6.9367257 6.936726 0.00000 1 16 1131 300 5.03 2.58 7.6190 (13) 320 7.2810663 7.278959 0.02894 2 5 1412 259 5.97 1.37 7.3490 (14) 242 6.9188992 6.918899 0.00000 1 3 719 243 3.85 0.50 4.3590 (15) 331 7.1778294 7.177251 0.00806 3 16 1820 229 5.77 2.88 8.65100 (1) 384 7.2522165 7.252217 0.00000 1 25 1514 426 9.72 5.38 15.10100 (2) 484 7.5176630 7.517663 0.00000 1 28 2901 316 10.36 4.24 14.60100 (3) 315 7.2746006 7.274601 0.00000 1 21 1285 305 6.35 3.10 9.45100 (4) 336 7.4342392 7.434239 0.00000 1 12 1418 354 7.50 2.13 9.63100 (5) 319 7.5670198 7.567020 0.00000 1 6 1158 278 6.66 1.31 7.97100 (6) 475 7.4414990 7.441499 0.00000 1 8 2864 280 9.80 3.23 13.03100 (7) 471 7.7740576 7.774058 0.00000 1 43 2896 330 8.92 7.42 16.34100 (8) 348 7.3033178 7.303253 0.00088 1 19 1482 333 7.40 3.77 11.17100 (9) 385 7.7952027 7.795203 0.00000 1 7 1676 384 8.02 3.19 11.21100 (10) 356 7.5952202 7.595220 0.00000 1 17 1518 298 7.31 3.38 10.69100 (11) 339 7.8674859 7.858919 0.10890 3 30 1324 278 7.01 3.21 10.22100 (12) 353 7.6131099 7.613110 0.00000 1 20 1276 326 6.60 2.21 8.81100 (13) 383 7.4604990 7.460499 0.00000 1 11 1862 429 8.69 3.84 12.53100 (14) 318 7.8632795 7.859664 0.04598 2 63 1098 387 6.92 8.09 15.01100 (15) 346 7.0446493 7.044649 0.00000 1 17 1357 475 6.84 3.07 9.91RectilinearTable B.7: Results for OR-library problems 90{100 points.

114N M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total250 (1) 631 10.2787493 10.278749 0.00000 1 83 698 804 2688.63 15.50 2704.13250 (2) 587 10.1096283 10.109628 0.00000 1 50 669 695 1953.25 10.25 1963.50250 (3) 647 10.0509392 10.050939 0.00000 1 143 717 750 2655.05 21.28 2676.33250 (4) 618 10.3914471 10.391447 0.00000 1 66 685 770 2460.38 11.28 2471.66250 (5) 598 10.2411179 10.241118 0.00000 1 157 672 667 2195.97 47.80 2243.77250 (6) 584 10.2291717 10.228884 0.00281 1 88 655 730 2120.24 18.74 2138.98250 (7) 609 10.1349385 10.134938 0.00000 1 17 681 802 2252.24 5.50 2257.74250 (8) 727 10.2988195 10.298820 0.00000 1 34 782 810 4559.43 10.11 4569.54250 (9) 608 10.3120414 10.312041 0.00000 1 74 679 722 2663.48 12.32 2675.80250 (10) 663 10.2468534 10.246820 0.00033 1 99 728 758 3482.97 23.79 3506.76250 (11) 664 9.8837981 9.883798 0.00000 1 11 727 695 2801.24 5.52 2806.76250 (12) 614 10.4839791 10.483979 0.00000 1 97 683 713 2362.36 17.62 2379.98250 (13) 707 10.1528736 10.152874 0.00000 1 104 775 730 3452.65 21.22 3473.87250 (14) 652 10.2689834 10.268926 0.00056 2 112 720 792 2455.02 20.86 2475.88250 (15) 656 10.1536571 10.153657 0.00000 1 290 719 723 2838.96 42.96 2881.92500 (1) 1415 14.3223762 14.322376 0.00000 1 237 1557 1590 12273.70 126.22 12399.92500 (2) 1363 14.1981990 14.197574 0.00440 1 109 1490 1461 15082.95 94.16 15177.11500 (3) 1426 14.3055601 14.305560 0.00000 1 715 1541 1600 14704.57 1909.63 16614.20500 (4) 1312 14.4213326 14.421299 0.00023 2 191 1444 1621 12813.63 149.95 12963.58500 (5) 1223 14.0810105 14.081010 0.00000 1 312 1364 1513 9226.70 432.37 9659.07500 (6) 1361 14.5338846 14.533885 0.00000 1 269 1499 1576 14600.33 290.12 14890.45500 (7) 1278 14.0592955 14.059295 0.00000 1 114 1411 1616 10677.15 43.52 10720.67500 (8) 1258 14.1537270 14.153727 0.00000 1 159 1389 1492 10828.92 137.83 10966.75500 (9) 1350 14.1968520 14.196852 0.00000 1 83 1465 1575 12253.89 61.63 12315.52500 (10) 1359 13.6601144 13.660114 0.00000 1 10 709 713 14128.39 3.64 14132.03500 (11) 1347 14.1774204 14.176406 0.00716 1 414 1481 1432 14275.90 1415.12 15691.02500 (12) 1265 14.3975974 14.397597 0.00000 1 302 1402 1545 11687.33 847.36 12534.69500 (13) 1211 14.1404526 14.140453 0.00000 1 176 1354 1596 8833.20 128.71 8961.91500 (14) 1487 14.6511697 14.651170 0.00000 1 135 1610 1508 16745.81 148.53 16894.34500 (15) 1325 14.1109532 14.110953 0.00000 1 812 1448 1504 11792.11 1107.19 12899.30EuclideanN M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total250 (1) 912 11.6609813 11.660981 0.00000 1 22 4021 796 123.99 11.55 135.54250 (2) 877 11.5150079 11.514005 0.00871 3 62 3706 1003 108.04 32.26 140.30250 (3) 838 11.4650399 11.465040 0.00000 1 127 3187 874 130.94 33.38 164.32250 (4) 899 11.7819530 11.780478 0.01252 1 38 3925 788 128.76 23.87 152.63250 (5) 902 11.6927089 11.692709 0.00000 1 313 3664 665 115.34 67.22 182.56250 (6) 868 11.6256250 11.625306 0.00275 2 117 3529 853 103.40 60.98 164.38250 (7) 880 11.5277351 11.527735 0.00000 1 38 3556 861 106.07 25.01 131.08250 (8) 1085 11.6833323 11.677163 0.05280 5 33 6126 846 125.20 25.89 151.09250 (9) 891 11.6821988 11.682199 0.00000 1 437 3490 800 100.07 220.25 320.32250 (10) 1115 11.6857628 11.678762 0.05991 3 78 6876 816 127.41 69.76 197.17250 (11) 980 11.2889613 11.287079 0.01668 5 46 4940 758 110.62 30.11 140.73250 (12) 919 11.9035256 11.902872 0.00549 2 71 3961 963 116.81 49.24 166.05250 (13) 979 11.6049496 11.601749 0.02758 8 238 4181 786 125.85 387.51 513.36250 (14) 940 11.6188791 11.618879 0.00000 1 12 4438 918 109.36 10.53 119.89250 (15) 972 11.5558198 11.555820 0.00000 1 96 4661 767 120.22 27.48 147.70500 (1) 1877 16.2978810 16.297268 0.00376 1 37 8972 1780 1137.31 88.74 1226.05500 (2) 2175 16.0756854 16.074292 0.00866 2 45 12005 1754 1194.68 82.94 1277.62500 (3) 2103 16.2664661 16.266466 0.00000 1 200 11408 1635 1093.94 1648.71 2742.65500 (4) 1839 16.4110997 16.411100 0.00000 1 165 8570 1729 1123.53 479.20 1602.73500 (5) 1825 16.0586161 16.053088 0.03443 9 458 7821 1560 1044.50 3149.40 4193.90500 (6) 2023 16.4685074 16.468507 0.00000 1 32 10252 1753 1148.43 96.79 1245.22500 (7) 1900 16.0124233 16.011407 0.00635 1 31 8313 1837 1096.92 51.36 1148.28500 (8) 1979 16.1248138 16.124644 0.00105 1 181 9278 1694 1139.57 1327.37 2466.94500 (9) 1925 16.2100435 16.207268 0.01712 5 40 9153 1577 1123.47 94.28 1217.75500 (10) 1880 15.5581203 15.558120 0.00000 1 76 8143 1638 1331.92 203.79 1535.71500 (11) 2018 16.1674316 16.167418 0.00008 1 390 9309 1767 1207.85 2702.49 3910.34500 (12) 1841 16.4009591 16.400625 0.00204 3 74 8547 1570 1079.17 267.36 1346.53500 (13) 1813 16.1324201 16.131619 0.00497 3 54 7190 1739 1053.40 171.74 1225.14500 (14) 2041 16.5984329 16.592090 0.03821 3 122 9497 1579 1159.58 601.91 1761.49500 (15) 1894 16.0758467 16.074649 0.00745 3 53 9045 1632 1099.43 72.32 1171.75RectilinearTable B.8: Results for OR-library problems 250{500 points.

115N M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total1000 (1) 2519 20.2375147 20.237515 0.00000 1 207 2817 3070 54378.15 290.64 54668.791000 (2) 2628 20.0770115 20.077011 0.00000 1 403 2906 3480 55014.51 829.35 55843.861000 (3) 2545 19.9644390 19.964439 0.00000 1 128 2788 3318 55826.65 248.59 56075.241000 (4) 2787 20.2341007 20.234101 0.00000 1 285 3027 3316 62346.85 410.28 62757.131000 (5) 2548 20.0592614 20.059261 0.00000 1 221 2809 3230 57033.21 376.83 57410.041000 (6) 2639 20.2982354 20.298235 0.00000 1 736 2895 2875 58181.42 26271.00 84452.421000 (7) 2538 20.2735687 20.273429 0.00069 2 259 2812 2973 50935.55 2013.17 52948.721000 (8) 2618 20.2179823 20.217400 0.00288 3 2995 2863 2997 59912.45 212605.95 272518.401000 (9) 2735 20.0901054 20.090105 0.00000 1 169 2981 3137 66569.00 679.66 67248.661000 (10) 2582 20.1299493 20.129949 0.00000 1 84 2839 3169 50642.13 194.93 50837.061000 (11) 2626 20.3131596 20.313160 0.00000 1 417 2886 3363 56819.50 850.54 57670.041000 (12) 2751 20.3558789 20.355879 0.00000 1 434 3003 3207 70516.06 1643.22 72159.281000 (13) 2575 19.9929902 19.992990 0.00000 1 473 2823 3370 47915.31 2586.08 50501.391000 (14) 2633 20.5686689 20.568669 0.00000 1 1188 2939 3091 64688.76 8444.38 73133.141000 (15) 2650 20.1739736 20.173974 0.00000 1 641 2909 3212 59522.88 4237.71 63760.59EuclideanN M Z Z % Nds LPs Constraints CPU secondsRoot Gap IRow RTight FST Gen FST Cat Total1000 (1) 4047 23.0535806 23.042695 0.04722 15 190 20966 3418 13091.26 2442.62 15533.881000 (2) 3883 22.7886471 22.788544 0.00045 1 123 17112 3455 11378.59 1089.12 12467.711000 (3) 3978 22.7807756 22.780639 0.00060 2 1077 19670 3332 12026.53 40275.44 52301.971000 (4) 3983 23.0200846 23.017442 0.01148 6 552 18309 3556 12076.06 2410.22 14486.281000 (5) 3916 22.8330602 22.832172 0.00389 2 904 18869 3156 12023.65 35497.08 47520.731000 (6) 4138 23.1028456 23.095362 0.03239 19 3287 21908 3160 12413.24 374356.59 386769.831000 (7) 3916 23.0945623 23.093270 0.00560 2 1050 19344 3416 11289.35 42697.75 53987.101000 (8) 4173 23.0639115 23.062650 0.00547 5 782 23043 3198 11390.31 46974.55 58364.861000 (9) 4355 22.7745838 22.773655 0.00408 6 112 25468 3209 16288.00 1074.69 17362.691000 (10) 3886 22.9267101 22.923663 0.01329 5 852 17704 3311 11648.66 45708.86 57357.521000 (11) 3884 23.1605619 23.157667 0.01250 6 593 18739 3631 11685.70 2143.10 13828.801000 (12) 4564 23.0904712 23.088224 0.00973 5 1597 27747 3389 14804.49 258108.23 272912.721000 (13) 3782 22.8031092 22.803109 0.00000 1 1837 18229 3280 11603.79 165687.02 177290.811000 (14) 4173 23.4318491 23.426697 0.02199 15 2298 21471 3322 12112.12 364853.03 376965.151000 (15) 4011 22.9965775 22.994263 0.01006 2 280 19768 3263 12641.83 2446.81 15088.64RectilinearTable B.9: Results for OR-library problems 1000 points.

Bibliography
[1] M. L. Balinski. On a selection problem. Management Sci., 17:230{231, 1970.[2] J. E. Beasley. Or-library | a collection of data sets for a variety of or problems.[3] J. E. Beasley. A heuristic for Euclidean and rectilinear Steiner problems. EuropeanJournal of Operational Research, 58:284{292, 1992.[4] C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, Netherlands, 1973.[5] P. Berman and V. Ramaiyer. Improved approximations for the Steiner tree problem.In Proceedings of the Third Symposium on Discrete Algorithms, pages 325{334, 1992.[6] C. W. Borchardt. Journal f. d. reine und angewandte Math., 57:111{121, 1860.[7] W. M. Boyce and J. E. Seery. STEINER 72: An improved version of Cockayne andSchiller's program STEINER for the minimal network problem. Technical Report 35,Bell Laboratories, Murray Hill, New Jersey, 1973.[8] A. Cayley. Collected Mathematical Papers of A. Cayley, volume 13. 1889.[9] E. J. Cockayne. On the Steiner problem. Canadian Mathematical Bulletin, 10:431{450,1967.[10] E. J. Cockayne and D. E. Hewgill. Exact computation of Steiner minimal trees in theplane. Information Processing Letters, 22:151{156, 1986.116

Bibliography117[11] E. J. Cockayne and D. E. Hewgill. Improved computation of plane Steiner minimaltrees. Algorithmica, 7:219{229, 1992.[12] E. J. Cockayne and D. G. Schiller. Computation of a Steiner minimal tree. In D. J. A.Welsh and D. R. Woodall, editors, Combinatorics, pages 53{71. Inst. Math. Appl.,1972.[13] R. Courant and H. Robbins. What is Mathematics? Oxford University Press, NewYork, 1941.[14] G. B. Dantzig and B. C. Eaves. Fourier-Motzkin elimination and its dual. Journal ofCombinatorial Theory (A), 14:288{297, 1973.[15] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1:195{207,1972.[16] U. F�o�meier and M. Kaufmann. On exact solutions for the rectilinear Steiner prob-lem, part i: Theoretical results. Technical Report WSI-96-09, Universit�at T�ubingen,Germany, 1996.[17] J. L. Ganley. Geometric Interconnection and Placement Algorithms. PhD thesis,Department of Computer Science, University of Virginia, Charlottesville, Virginia,1995.[18] J. L. Ganley and J. P. Cohoon. A faster dynamic programming algorithm for exactrectilinear Steiner minimal trees. In Proceedings of the Fourth Great Lakes Symposiumon VLSI, pages 238{241, 1994.[19] J. L. Ganley and J. P. Cohoon. Optimal rectilinear Steiner minimal trees in O(n22:62n)time. In Proceedings of the Sixth Canadian Conference on Computational Geometry,pages 308{313, 1994.

Bibliography118[20] M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of computing Steinerminimal trees. SIAM Journal on Applied Mathematics, 32:835{859, 1977.[21] M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete.SIAM Journal on Applied Mathematics, 32:826{834, 1977.[22] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics.Addison-Wesley, Reading, Massachusetts, 1990.[23] M. Gr�otschel, L. Lov�asz, and A. Schrijver. The ellipsoid method and its consequencesin combinatorial optimization. Combinatorica, 1(2):169{197, 1981.[24] M. Gr�otschel, L. Lov�asz, and A. Schrijver. Corregendum to our paper \the ellip-soid method and its consequences in combinatorial optimization". Combinatorica,4(4):291{295, 1984.[25] S. L. Hakimi. Steiner's problem in graphs and its implications. Networks, 1:113{133,1971.[26] M. Hanan. On Steiner's problem with rectilinear distance. SIAM Journal on AppliedMathematics, 14:255{265, 1966.[27] F. K. Hwang. On Steiner minimal trees with rectilinear distance. SIAM Journal onApplied Mathematics, 30:104{114, 1976.[28] F. K. Hwang. A linear time algorithm for full Steiner trees. Operations ResearchLetters, 4:235{237, 1986.[29] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem, volume 53 ofAnnals of Discrete Mathematics. North-Holland, Amsterdam, Netherlands, 1992.[30] F. K. Hwang and J. F. Weng. The shortest network under a given topology. Journalof Algorithms, 13(3):468{488, 1992.

Bibliography119[31] V. Jarn��k and O. K�ossler. O minim�aln��ch grafech obsahuj��c��ch n dan�ych bodu. Ĉas.Pêstov�an�� Mat., 63:223{235, 1934.[32] A. B. Kahng and G. Robins. A new class of iterative Steiner tree heuristics with goodperformance. IEEE Transactions on Computer-Aided Design, 11:893{902, 1992.[33] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.Thatcher, editors, Complexity of Computer Computations, pages 85{103. Plenum Press,New York, 1972.[34] T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. TechnicalReport SC 96{42, Konrad-Zuse-Zentrum f�ur Informationstechnik, Berlin, Germany,1996.[35] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesmanproblem. Proc. Amer. Math. Soc., 7:48{56, 1956.[36] F. D. Lewis, W. C. Pong, and N. Van Cleave. Optimum Steiner tree generation. InProceedings of the Second Great Lakes Symposium on VLSI, pages 207{212, 1992.[37] L. Lov�asz. Combinatorial Problems and Exercises. North-Holland, Amsterdam,Netherlands, 1979.[38] A. Lucena and J. E. Beasley. Branch and cut algorithms. In J. E. Beasley, editor,Advances in Linear Integer Programming. Oxford University Press, 1996.[39] T. McCormick. Personal communication, September 1997.[40] Z. A. Melzak. On the problem of Steiner. Canadian Mathematics Bulletin, 4:143{149,1961.[41] M. Padberg and L. Wolsey. Trees and cuts. Annals of Discrete Mathematics, 17, 1983.

Bibliography120[42] J.-C. Picard. Maximal closure of a graph and application to combinatorial problems.Management Sci., 22:1268{1272, 1976.[43] J.-C. Picard and M. Queyranne. A network ow solution to some nonlinear 0 � 1programming problems, with applications to graph theory. Networks, pages 141{159,1982.[44] H. Pr�ufer. Arch. Math. u. Phys., 27:142{144, 1918.[45] M. Queyranne. Personal communication, May 1997.[46] G. Reinelt. TSPLIB - a traveling salesman problem library. ORSA Journal onComputing, 3(4):376{384, 1991.[47] J. M. W. Rhys. A selection problem of shared �xed costs and network ows.Management Sci., 17:200{207, 1970.[48] J. S. Salowe and D. M. Warme. An exact rectilinear Steiner tree algorithm. InProceedings of the International Conference on Computer Design, pages 472{475, 1993.[49] J. S. Salowe and D. M. Warme. 35-point rectilinear Steiner minimal trees in a day.Networks, 25:69{87, 1995.[50] A. F. Sidorenko. On minimal rectilinear Steiner trees. Diskretnaya Matematika,1:28{37, 1989. (In Russian).[51] W. D. Smith. Personal communication, February 1998.[52] J. Soukup and W. F. Chow. Set of test problems for the minimum length connectionnetworks. ACM/SIGMAP Newsletter, 15:45{81, 1973.[53] R. P. Stanley. Enumerative Combinatorics, volume 1. Wadsworth Brooks Cole, 1986.

Bibliography121[54] C. D. Thomborson, B. Alpern, and L. Carter. Rectilinear Steiner tree minimizationon a workstation. In N. Dean and G. E. Shannon, editors, Computational Supportfor Discrete Mathematics, volume 15 of DIMACS Series in Discrete Mathematicsand Theoretical Computer Science, pages 119{136. American Mathematical Society,Providence, Rhode Island, 1994.[55] I. Tomescu and M. Zimand. Minimum spanning hypertrees. Discrete AppliedMathematics, 54:67{76, 1994.[56] D. Trietsch and F. K. Hwang. An improved algorithm for Steiner trees. SIAM Journalon Applied Mathematics, 50:244{263, 1990.[57] R. A. Wagner. Evaluating uniform expressions within two steps of minimum paralleltime. Journal of the ACM, 44(2):345{361, 1997.[58] D. M. Warme, P. Winter, and M. Zachariasen. Exact algorithms for plane Steiner treeproblems: A computational study. In D.-Z. Du, J. M. Smith, and J. H. Rubinstein, edi-tors, Advances in Steiner Trees. Kluwer Academic Publishers, Norwell, Massachusetts,1998.[59] H. S. Wilf. Generatingfunctionology. Academic Press, San Diego, California, secondedition, 1994.[60] P. Winter. An algorithm for the Steiner problem in the Euclidean plane. Networks,15:323{345, 1985.[61] P. Winter. Reductions for the rectilinear Steiner tree problem. manuscript, 1994.[62] P. Winter and M. Zachariasen. Euclidean Steiner minimum trees: an improved exactalgorithm. Networks, 30:149{166, 1997.

Bibliography122[63] Y. Y. Yang and O. Wing. Optimal and suboptimal solution algorithms for the wiringproblem. In Proceedings of the International Symposium on Circuit Theory, pages154{158, 1972.[64] M. Zachariasen. Rectilinear full Steiner tree generation. Technical Report DIKU{TR{97/29, University of Copenhagen, Universitetsparken 1, DK{2100 KBH �, Denmark,1997.

